The increased BOLD response spatially localized within the sensorimotor cortex reflects an increase in neuronal activity that may provide augmented neuronal excitability.
The objective was to investigate if whole-hand mechanical stimulation (MSTIM) in the tapping-flutter frequency range induces outlasting post-stimulus changes in the hand region of the primary motor cortex. MSTIM was delivered to 12 healthy subjects for 20 min using a therapeutic stimulation device (Swisswing BMR 2000). Frequencies of 10 and 25 Hz were tested in separate sessions, and for control additionally the foot sole was stimulated at 25 Hz. Motor evoked potentials (MEPs) after single (recruitment curves) and paired-pulse transcranial magnetic stimulation (TMS) were recorded from FDI and APB muscles of the right hand. TMS assessments were carried out at baseline (T0), immediately after (T1), 30 min (T2), 1 h (T3) and 2 h (T4) after end of MSTIM. After MSTIM with 25 Hz, MEP recruitment curves were increased at all post-stimulation assessments in both muscles. The most significant effect was achieved at T3 (1 h). Intracortical inhibition was decreased within the first hour, while intracortical facilitation was increased at all post-stimulation assessments. No significant effects were found following MSTIM with 10 Hz and following foot vibration. We conclude that 20 min MSTIM with a frequency of 25 Hz induces outlasting plastic changes in the primary motor cortex. Paired-pulse stimulation further confirms that intrinsic intracortical mechanisms are involved in these changes. Spinal adaptation could be excluded (F-wave assessments). These results could be of relevance for hemiplegic patients with motor deficits, to improve the rehabilitation outcome with vibration exercise in combination with motor training.
This study examines with transcranial magnetic stimulation (TMS) and with functional magnetic resonance imaging (fMRI) whether 20 min of repetitive peripheral magnetic stimulation (rPMS) has a facilitating effect on associated motor controlling regions. Trains of rPMS with a stimulus intensity of 150% of the motor threshold (MT) were applied over right hand flexor muscles of healthy volunteers. First, with TMS, 10 vs. 25 Hz rPMS was examined and compared to a control group. Single and paired pulse motor evoked potentials (MEPs) from flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles were recorded at baseline (T0), post rPMS (T1), 30 min post (T2), 1 h post (T3) and 2 h post rPMS (T4). Then, with fMRI, 25 Hz rPMS was compared to sham stimulation by utilizing a finger tapping activation paradigm. Changes in bloodoxygen level dependent (BOLD) contrast were examined at baseline (PRE), post rPMS (POST1) and 1 h post rPMS (POST2). With TMS facilitation was observed in the target muscle (FCR) following 25 Hz rPMS: MEP recruitment curves (RCs) were increased at T1, T2 and T3, and intracortical facilitation (ICF) was increased at T1 and T2. No effects were observed following 10 Hz rPMS. With fMRI the BOLD contrast at the left sensorimotor area was increased at POST1. Compared to inductions protocols based on transcutaneous electrical stimulation and mechanical stimulation, the rPMS induced effects appeared shorter lasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.