a b s t r a c tThe synthetic surfactant, perfluorooctanoic acid (PFOA) is a proven developmental toxicant in mice, causing pregnancy loss, increased neonatal mortality, delayed eye opening, and abnormal mammary gland growth in animals exposed during fetal life. PFOA is found in the sera and tissues of wildlife and humans throughout the world, but is especially high in the sera of children compared to adults. These studies in CD-1 mice aim to determine the latent health effects of PFOA following: (1) an in utero exposure, (2) an in utero exposure followed by ovariectomy (ovx), or (3) exposure as an adult. Mice were exposed to 0, 0.01, 0.1, 0.3, 1, 3, or 5 mg PFOA/kg BW for 17 days of pregnancy or as young adults. Body weight was reduced in the highest doses on postnatal day (PND) 1 and at weaning. However, the lowest exposures (0.01-0.3 mg/kg) significantly increased body weight, and serum insulin and leptin (0.01-0.1 mg/kg) in mid-life after developmental exposure. PFOA exposure combined with ovx caused no additional increase in mid-life body weight. At 18 months of age, the effects of in utero PFOA exposure on body weight were no longer detected. White adipose tissue and spleen weights were decreased at high doses of PFOA in intact developmentally exposed mice, and spleen weight was reduced in PFOA-exposed ovx mice. Brown adipose tissue weight was significantly increased in both ovx and intact mice at high PFOA doses. Liver weight was unaffected in late life by these exposure paradigms. Finally, there was no effect of adult exposure to PFOA on body weight. These studies demonstrate an important window of exposure for low-dose effects of PFOA on body weight gain, as well as leptin and insulin concentrations in mid-life, at a lowest observed effect level of 0.01 mg PFOA/kg BW. The mode of action of these effects and its relevance to human health remain to be explored.Published by Elsevier Ireland Ltd.
BackgroundConcerns over the health effects of nanomaterials in the environment have created a need for microscopy methods capable of examining the biological interactions of nanoparticles (NP). Unfortunately, NP are beyond the diffraction limit of resolution for conventional light microscopy (~200 nm). Fluorescence and electron microscopy techniques commonly used to examine NP interactions with biological substrates have drawbacks that limit their usefulness in toxicological investigation of NP. EM is labor intensive and slow, while fluorescence carries the risk of photobleaching the sample and has size resolution limits. In addition, many relevant particles lack intrinsic fluorescence and therefore can not be detected in this manner. To surmount these limitations, we evaluated the potential of a novel combination of darkfield and confocal laser scanning microscopy (DF-CLSM) for the efficient 3D detection of NP in human lung cells. The DF-CLSM approach utilizes the contrast enhancements of darkfield microscopy to detect objects below the diffraction limit of 200 nm based on their light scattering properties and interfaces it with the power of confocal microscopy to resolve objects in the z-plane.ResultsValidation of the DF-CLSM method using fluorescent polystyrene beads demonstrated spatial colocalization of particle fluorescence (Confocal) and scattered transmitted light (Darkfield) along the X, Y, and Z axes. DF-CLSM imaging was able to detect and provide reasonable spatial locations of 27 nm TiO2 particles in relation to the stained nuclei of exposed BEAS 2B cells. Statistical analysis of particle proximity to cellular nuclei determined a significant difference between 5 min and 2 hr particle exposures suggesting a time-dependant internalization process.ConclusionsDF-CLSM microscopy is an alternative to current conventional light and electron microscopy methods that does not rely on particle fluorescence or contrast in electron density. DF-CLSM is especially well suited to the task of establishing the spatial localization of nanoparticles within cells, a critical topic in nanotoxicology. This technique has advantages to 2D darkfield microscopy as it visualizes nanoparticles in 3D using confocal microscopy. Use of this technique should aid toxicological studies related to observation of NP interactions with biological endpoints at cellular and subcellular levels.
The estrogenic and antiestrogenic potential of perfluorooctanoic acid (PFOA) was assessed using an immature mouse uterotrophic assay and by histologic evaluation of the uterus, cervix and vagina following treatment. Female offspring of CD-1 dams were weaned at 18 days old and assigned to groups of equal weight, and received 0, 0.01, 0.1, or 1 mg PFOA/kg BW/d by gavage with or without 17-β estradiol (E 2 , 500 μg/kg/d) from PND18-20 (n=8/treatment/block). At 24 hr after the third dose (PND 21), uteri were removed and weighed. Absolute and relative uterine weights were significantly increased in the 0.01 mg/kg PFOA only group. Characteristic estrogenic changes were present in all E 2 -treated mice; however, they were minimally visible in Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Conflict of interestAll authors declare there are no financial conflict of interest issues. DisclaimerThe information in this document has been subjected to review by the National Institute of Environmental Health Sciences, NIH and the U.S. EPA's National Health and Environmental Effects Laboratory and approved for publication. This article may be the work product of an employee or group of employees of the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), however, the statements, opinions or conclusions contained therein do not necessarily represent the statements, opinions or conclusions of NIEHS, NIH or the United States government. NIH Public Access
Abnormally high incidences of asbestos-related pulmonary disease have been reported in residents of Libby, Montana, because of occupational and environmental exposure to asbestos-contaminated vermiculite. The mechanism by which Libby amphibole (LA) causes pulmonary injury is not known. The purpose of this study is to compare the cellular stress responses induced in primary human airway epithelial cells (HAECs) exposed to a respirable size fraction (≤ 2.5 μm) of Libby amphibole (LA(2.5)) to a similar size fraction of a reference amphibole sample amosite (AM(2.5)). HAEC were exposed to 0, 2.64, 13.2, or 26.4 μg/cm(2) AM(2.5) or LA(2.5) or to equivalent doses of unfractionated amosite (AM) or LA for 2 or 24 h. Comparable messenger RNA transcript levels were observed for interleukin-8, cyclooxygenase-2, and heme oxygenase-1 in HAEC following a 24-h exposure to AM or LA. Conversely, exposure to AM(2.5) resulted in a 4- to 10-fold greater induction in these proinflammatory mediators compared with LA(2.5) after 24 h. Evaluation of the expression of 84 additional genes involved in cellular stress and toxicity responses confirmed a more robust response for AM(2.5) compared with LA(2.5) on an equal mass basis. Differences in total surface area (TSA) by gas adsorption, total particle number, or oxidant generation by the size-fractionated particles did not account for the observed difference in response. In summary, AM(2.5) and LA(2.5) are at least as potent in stimulating production of proinflammatory cytokines as unfractionated AM and LA. Interestingly, AM(2.5) was more potent at inducing a proinflammatory response than LA(2.5). This difference could not be explained by differences in mineral contamination between the two samples, TSA, or oxidant generation by the samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.