This paper presents a new approach to predict the tensile strength of one-dimensional fibrous materials. The approach combines discrete-event simulation of the fiber flow with agent-based modelling of the fiber slippage. The ability of the elaborated model of the fiber flow to track every fiber separately enables the calculation and analysis of all contacts and forces between the fibers, and the prediction of the material's tensile strength. The model is based on the phenomenon of the strength associated with the fiber slippage effect. Algorithms for modeling the cross-section and the segment tensile strength are developed. Implementation of this algorithm and the study of the behavior of the elaborated model by varying the basic parameters will be described in the Part 2 of the article.
A combined method of discrete event and agent based modelling has been applied to the computer modelling and simulation of the tensile strength of one-dimensional fibrous materials (ODFM). This combined method is based on the concept of discrete event simulation as being applied to the modeling of the structure of the fiber flow and on the concept of agent based modelling for modelling and simulation of the fiber interaction within the structure of the fibrous material. Frictional and traction forces arise as the result of this fiber interaction. A model of the ODFM tensile strength, which is based on the slippage effect, is created and studied in this research. Only frictional and traction forces determine the tensile strength in this kind of the model. The article examines the validation problem of the slippage effect based tensile strength model and questions regarding the strength potential estimation through variation in the parameters of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.