The Nogo66 receptor (NgR1) is a neuronal, leucinerich repeat (LRR) protein that binds three central nervous system (CNS) myelin proteins, Nogo, myelinassociated glycoprotein, and oligodendrocyte myelin glycoprotein, and mediates their inhibitory effects on neurite growth. Although the LRR domains on NgR1 are necessary for binding to the myelin proteins, the exact epitope(s) involved in ligand binding is unclear. Here we report the generation and detailed characterization of an anti-NgR1 monoclonal antibody, 7E11. The 7E11 monoclonal antibody blocks Nogo, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein binding to NgR1 with IC 50 values of 120, 14, and 4.5 nM, respectively, and effectively promotes neurite outgrowth of P3 rat dorsal root ganglia neurons cultured on a CNS myelin substrate. Further, we have defined the molecular epitope of 7E11 to be DNAQLR located in the third LRR domain of rat NgR1. Our data demonstrate that anti-NgR1 antibodies recognizing this epitope, such as 7E11, can neutralize CNS myelin-dependent inhibition of neurite outgrowth. Thus, specific anti-NgR1 antibodies may represent a useful therapeutic approach for promoting CNS repair after injury.
The development of the enteric nervous system is dependent upon the actions of glial cell line-derived neurotrophic factor (GDNF) on neural crest-derived precursor cells in the embryonic gut. GDNF treatment of cultured enteric precursor cells leads to an increase in the number of neurons that develop and/or survive. Here we demonstrate that, although GDNF promoted an increase in neuron number at all embryonic ages examined, there was a developmental shift from a mitogenic to a trophic response by the developing enteric neurons. The timing of this shift corresponded to developmental changes in gut expression of GFR alpha-1, a co-receptor in the GDNF-Ret signaling complex. GFR alpha-1 was broadly expressed in the gut at early developmental stages, at which times soluble GFR alpha-1 was released into the medium by cultured gut cells. At later times, GFR alpha-1 became restricted to neural crest-derived cells. GFR alpha-1 could participate in GDNF signaling when expressed in cis on the surface of enteric precursor cells, or as a soluble protein. The GDNF-mediated response was greater when cell surface, compared with soluble, GFR alpha-1 was present, with the maximal response seen the presence of both cis and trans forms of GFR alpha-1. In addition to contributing to GDNF signaling, cell-surface GFR alpha-1 modulated the specificity of interactions between GDNF and soluble GFR alphas. These experiments demonstrate that complex, developmentally regulated, signaling interactions contribute to the GDNF-dependent development of enteric neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.