The oxidation of alcohols to carboxylic acids is an important industrial reaction used in the synthesis of bulk and fine chemicals. Most current processes are performed by making use of either stoichiometric amounts of toxic oxidizing agents or the use of pressurized dioxygen. Here, we describe an alternative dehydrogenative pathway effected by water and base with the concomitant generation of hydrogen gas. A homogeneous ruthenium complex catalyses the transformation of primary alcohols to carboxylic acid salts at low catalyst loadings (0.2 mol%) in basic aqueous solution. A consequence of this finding could be a safer and cleaner process for the synthesis of carboxylic acids and their derivatives at both laboratory and industrial scales.
A nonoxidative addition pathway for the activation of NH bonds of ammonia and amines by a Ru(II) complex is reported. The pincer complex 1 cleaves N-H bonds via metal-ligand cooperation involving aromatization of the pincer ligand without a change in the formal oxidation state of the metal. Electron-rich N-H bond substrates lead to reversible activation, while electron-poor substrates result in stable activation products. Isotopic labeling studies using ND(3) as well as density functional theory calculations were used to shed light on the N-H activation mechanism.
A (PNP)Co(I)methyl diamagnetic complex formally loses an H atom from the pincer ligand, exhibiting a long-range metal-ligand cooperation in what may be considered as an unusual example of 'C-H cleavage'. Spectroscopic data indicate that the product is a neutral Co(I) complex with a radical delocalized in the ligand backbone.
Monohydrocarbyl palladium(IV) complexes bearing OH, OH(2), Br, and Cl ligands at the metal and supported by facially chelating 1-hydroxy-1,1-bis(2-pyridyl)methoxide were readily prepared in water at 0 °C. These complexes reductively eliminate Ar-X (X = OH, Br, Cl) in water at room temperature in high yield, and the corresponding first-order rate constants k(OH), k(Cl), and k(Br) are on the same order of magnitude.
The ability of Pd(II) complexes derived from 2,6-pyridinedicarboxylic acids to catalyze homogeneous regioselective aerobic oxidation of 5- and 6-substituted 8-methylquinolines in AcOH-Ac(2)O solution to produce corresponding 8-quinolylmethyl acetates in high yield was demonstrated; corresponding 8-quinoline carboxylic acids are minor reaction products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.