Despite a significant growth in food production over the past half-century, one of the most important challenges facing society today is how to feed an expected population of some nine billion by the middle of the 20th century. To meet the expected demand for food without significant increases in prices, it has been estimated that we need to produce 70-100 per cent more food, in light of the growing impacts of climate change, concerns over energy security, regional dietary shifts and the Millennium Development target of halving world poverty and hunger by 2015. The goal for the agricultural sector is no longer simply to maximize productivity, but to optimize across a far more complex landscape of production, rural development, environmental, social justice and food consumption outcomes. However, there remain significant challenges to developing national and international policies that support the wide emergence of more sustainable forms of land use and efficient agricultural production. The lack of information flow between scientists, practitioners and policy makers is known to exacerbate the difficulties, despite increased emphasis upon evidence-based policy. In this paper, we seek to improve dialogue and understanding between agricultural research and policy by identifying the 100 most important questions for global agriculture. These have been compiled using a horizon-scanning approach with leading experts and representatives of major agricultural organizations worldwide. The aim is to use sound scientific evidence to inform decision making and guide policy makers in the future direction of agricultural research priorities and policy support. If addressed, we anticipate that these questions will have a significant impact on global agricultural practices worldwide, while improving the synergy between agricultural policy, practice and research. This research forms part of the UK Government's Foresight Global Food and Farming Futures project
The importance of cassava as a food security crop in Africa and the world Cassava, originally from South America, is the fourth most important source of calories in the developing world after the cereal crops wheat, maize, and rice. Worldwide, it feeds an estimated 700 million people directly or indirectly. Cassava production has increased steadily for the last 50 years, with 242 MT harvested in 2012. The increase is likely to continue as farmers in more than 105 countries come to recognize the crop's advantages. A semi-perennial root crop, cassava can stay in the ground for up to 3 years. This makes it an excellent food security crop: when all other crops have been exhausted, cassava roots can still be harvested. It is naturally drought resistant and resilient to climatic changes, high temperatures, and poor soils, and in addition, cassava responds extremely well to high CO 2 concentrations, making it a very important crop for the 21st century. Africa alone accounts for more than 55 % of the world's production, and cassava is the first food crop in fresh tonnage before maize and plantain in sub-Saharan Africa. Cassava is also an important source of income, especially for women in sub-Saharan Africa (SSA). Furthermore, cassava is the second most important source of starch in the world. Cassava is thus a highly valuable crop for the world today and in the future. It is critical that it should not be compromised by viral diseases.
No abstract
Recent developments in agricultural science and technology have the potential to transform the agricultural sector in the developing world. These technological advances constitute key drivers of economic growth and hold great promise for poverty reduction in sub-Saharan Africa (SSA). Agricultural research and development in Africa is undergoing a major paradigm shift. Until recently, public-sector institutions in Africa worked in isolation to create and disseminate agricultural technologies to smallholder farmers. However, they need access to improved proprietary technologies developed for the most part by the private sector in developed countries. These technologies are currently concentrated in the hands of a few large corporations and are protected by intellectual property rights. The African Agricultural Technology Foundation (AATF) is a new initiative addressing the challenges associated with the access, development, and deployment of agricultural technologies to smallholder farmers in SSA. This article describes the AATF model of facilitating the creation of partnership alliances dedicated to promote and support collaboration among a wide variety of public-and private-sector organizations around shared agricultural research and development goals for the public good. It explains AATF's public-private partnership framework for technology delivery in the light of market failures, institutional constraints, and systemic weaknesses, which impede public-sector organizations from accessing and delivering pro-poor knowledge and technology to farmers. The article provides policy makers, research managers, and business decision makers with an understanding of how access to, and delivery of, proprietary technologies could contribute to food security and the improvement of farmers' livelihoods in Africa.Key words: agricultural technology; biosafety regulation; freedom to operate; intellectual property management; public-private partnership; research for development; rural poverty African Agriculture and Constraints to Agricultural ProductivityAfrica has an estimated land area of about 30 million km 2 , second only to that of the Asian continent. The population, which stood at 200 million 30 years ago, has increased more than fourfold to the current estimate of 930 million. At the current growth rate of 3.1%, the highest population growth rate in the world, it is projected that there will be 1.7 billion people living in sub-Saharan Africa (SSA). Agriculture h.mignouna@aatf-africa.org remains the backbone of many African economies, representing an estimated 57% of total employment and 17% of the gross domestic product. 1 Despite the importance of this sector, agricultural productivity of the continent is low, barely exceeding 1% annual growth.SSA is the only region of the world where per capita food grain output has declined over the past four decades, requiring the continent to import 25% of its food grain requirements.2,3 Cereal crop yields in SSA have stagnated and remain at an average of about 1 ton per hectare (ha)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.