Calculated methyl anion affinities are known to correlate with experimentally determined Mayr E parameters for individual organic functional group classes but not between neutral and cationic organic electrophiles. We demonstrate that methyl anion affinities calculated with a solvation model (MAA*) give a linear correlation with Mayr E parameters for a broad range of functional groups. Methyl anion affinities (MAA*), plotted on the log scale of Mayr E, provide insights into the full range of electrophilicity of organic functional groups. On the Mayr E scale, the electrophilicity toward the methyl anion spans 180 orders of magnitude. Article pubs.acs.org/joc
Low‐efficacy mu‐opioid receptor (MOR) agonists represent promising therapeutics, but existing compounds (e.g., buprenorphine, nalbuphine) span a limited range of low MOR efficacies and have poor MOR selectivity. Accordingly, new and selective low‐efficacy MOR agonists are of interest. A novel set of chiral C9‐substituted phenylmorphans has been reported to display improved MOR selectivity and a range of high‐to‐low MOR efficacies under other conditions; however, a full opioid receptor binding profile for these drugs has not been described. Additionally, studies in mice will be useful for preclinical characterization of these novel compounds, but the pharmacology of these drugs in mice has also not been examined. Accordingly, the present study characterized the binding selectivity and in vitro efficacy of these compounds using assays of opioid receptor binding and ligand‐stimulated [35S]GTPɣS binding. Additionally, locomotor effects were evaluated as a first step for in vivo behavioral assessment in mice. The high‐efficacy MOR agonist and clinically effective antidepressant tianeptine was included as a comparator. In binding studies, all phenylmorphans showed improved MOR selectivity relative to existing lower‐efficacy MOR agonists. In the ligand‐stimulated [35S]GTPɣS binding assay, seven phenylmorphans had graded levels of sub‐buprenorphine MOR efficacy. In locomotor studies, the compounds again showed graded efficacy with a rapid onset and ≥1 h duration of effects, evidence for MOR mediation, and minor sex differences. Tianeptine functioned as a high‐efficacy MOR agonist. Overall, these in vitro and in vivo studies support the characterization of these compounds as MOR‐selective ligands with graded MOR efficacy and utility for further behavioral studies in mice.
Methyl cation affinities are calculated for the canonical nucleophilic functional groups in organic chemistry. These methyl cation affinities, calculated with a solvation model (MCA*), give an emprical correlation with the Ns N term from the Mayr equation under aprotic conditions when they are scaled to the Mayr reference cation (4-MeOC 6 H 4 ) 2 CH + (Mayr E = 0). Highly reactive anionic nucleophiles were found to give a separate correlation, while some ylides and phosphorus compounds were determined to give a poor correlation. MCA*s are estimated for a broad range of simple molecules representing the canonical functional groups in organic chemistry. On the basis of a linear correlation, we estimate the range of nucleophilicities of organic functional groups, ranging from a C−C bond to a hypothetical tert-butyl carbanion, toward the reference electrophile to be about 50 orders of magnitude.
Three C9 substituted N-phenethyl-5-phenylmorphans were found to be extremely G-protein biased potent mu opioid receptor partial agonists that did not recruit beta-arrestin at all in both the PathHunter assay and in the Tango assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.