Low-latency anonymity systems such as Tor, AN.ON, Crowds, and Anonymizer.com aim to provide anonymous connections that are both untraceable by "local" adversaries who control only a few machines and have low enough delay to support anonymous use of network services like Web browsing and remote login. One consequence of these goals is that these services leak some information about the network latency between the sender and one or more nodes in the system. We present two attacks on low-latency anonymity schemes using this information. The first attack allows a pair of colluding Web sites to predict, based on local timing information and with no additional resources, whether two connections from the same Tor exit node are using the same circuit with high confidence. The second attack requires more resources but allows a malicious Web site to gain several bits of information about a client each time he visits the site. We evaluate both attacks against two low-latency anonymity protocols-the Tor network and the MultiProxy proxy aggregator service-and conclude that both are highly vulnerable to these attacks.
Abstract-Ad hoc low-power wireless networks are an exciting research direction in sensing and pervasive computing. Prior security work in this area has focused primarily on denial of communication at the routing or medium access control levels. This paper explores resource depletion attacks at the routing protocol layer, which permanently disable networks by quickly draining nodes' battery power. These "Vampire" attacks are not specific to any specific protocol, but rather rely on the properties of many popular classes of routing protocols. We find that all examined protocols are susceptible to Vampire attacks, which are devastating, difficult to detect, and are easy to carry out using as few as one malicious insider sending only protocol-compliant messages. In the worst case, a single Vampire can increase network-wide energy usage by a factor of OðNÞ, where N in the number of network nodes. We discuss methods to mitigate these types of attacks, including a new proof-of-concept protocol that provably bounds the damage caused by Vampires during the packet forwarding phase.
No abstract
The concept of "system of systems" architecture is increasingly prevalent in many critical domains. Such systems allow information to be pulled from a variety of sources, analyzed to discover correlations and trends, stored to enable realtime and post-hoc assessment, mined to better inform decisionmaking, and leveraged to automate control of system units. In contrast, medical devices typically have been developed as monolithic stand-alone units. However, a vision is emerging of a notion of a medical application platform (MAP) that would provide device and health information systems (HIS) interoperability, safety critical network middleware, and an execution environment for clinical applications ("apps") that offer numerous advantages for safety and effectiveness in health care delivery.In this paper, we present the clinical safety/effectiveness and economic motivations for MAPs, and describe key characteristics of MAPs that are guiding the search for appropriate technology, regulatory, and ecosystem solutions. We give an overview of the Integrated Clinical Environment (ICE) -one particular achitecture for MAPs, and the Medical Device Coordination Framework -a prototype implementation of the ICE architecture. Abstract-The concept of "system of systems" architecture is increasingly prevalent in many critical domains. Such systems allow information to be pulled from a variety of sources, analyzed to discover correlations and trends, stored to enable realtime and post-hoc assessment, mined to better inform decisionmaking, and leveraged to automate control of system units. In contrast, medical devices typically have been developed as monolithic stand-alone units. However, a vision is emerging of a notion of a medical application platform (MAP) that would provide device and health information systems (HIS) interoperability, safety critical network middleware, and an execution environment for clinical applications ("apps") that offer numerous advantages for safety and effectiveness in health care delivery.In this paper, we present the clinical safety/effectiveness and economic motivations for MAPs, and describe key characteristics of MAPs that are guiding the search for appropriate technology, regulatory, and ecosystem solutions. We give an overview of the Integrated Clinical Environment (ICE) -one particular achitecture for MAPs, and the Medical Device Coordination Framework -a prototype implementation of the ICE architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.