BackgroundChanges in nonlinear neuronal mechanisms of EEG generation in the course of general anaesthesia have been extensively investigated in research literature. A number of EEG signal properties capable of tracking these changes have been reported and employed in anaesthetic depth monitors. The degree of phase coupling between different spectral components is a marker of nonlinear EEG generators and is claimed to be an important aspect of BIS. While bicoherence is the most direct measure of phase coupling, according to published research it is not directly used in the calculation of BIS, and only limited studies of its association with anaesthetic depth and level of consciousness have been published. This paper investigates bicoherence parameters across equal band and unequal band bifrequency regions, during different states of anaesthetic depth relating to routine clinical anaesthesia, as determined by visual inspection of EEG.Methods41 subjects scheduled for day surgery under general anaesthesia were recruited into this study. EEG bicoherence was analysed using average and smoothed-peak estimates calculated over different regions on the bifrequency plane. Statistical analysis of associations between anaesthetic depth/state of consciousness and bicoherence estimates included linear regression using generalised linear mixed effects models (GLMs), ROC curves and prediction probability (Pk).ResultsBicoherence estimates for the δ_θ region on the bifrequency plane were more sensitive to anaesthetic depth changes compared to other bifrequency regions. Smoothed-peak bicoherence displayed stronger associations than average bicoherence. Excluding burst suppression and large transients, the δ_θ peak bicoherence was significantly associated with level of anaesthetic depth (z = 25.74, p < 0.001 and R2 = 0.191). Estimates of Pk for this parameter were 0.889(0.867-0.911) and 0.709(0.689-0.729) respectively for conscious states and anaesthetic depth levels (comparable BIS estimates were 0.928(0.905-0.950) and 0.801(0.786-0.816)). Estimates of linear regression and areas under ROC curves supported Pk findings. Bicoherence for eye movement artifacts were the most distinctive with respect to other EEG patterns (average |z| value 13.233).ConclusionsThis study quantified associations between deepening anaesthesia and increase in bicoherence for different frequency components and bicoherence estimates. Increase in bicoherence was also established for eye movement artifacts. While identified associations extend earlier findings of bicoherence changes with increases in anaesthetic drug concentration, results indicate that the unequal band bifrequency region, δ_θ, provides better predictive capabilities than equal band bifrequency regions.
Objective: In this study, electroencephalography activity recorded during monotonous driving was investigated to examine the predictive capability of monopolar EEG analysis for fatigue/sleepiness in a cohort of train drivers. Approach: Sixty-three train drivers participated in the study, where 32- lead monopolar EEG data was recorded during a monotonous driving task. Participant sleepiness was assessed using the Pittsburgh sleep quality index (PSQI), the Epworth sleepiness scale (ESS), the Karolinksa sleepiness scale (KSS) and the checklist of individual strength 20 (CIS20). Main results: Self-reported fatigue/sleepiness scores of the train driver cohort were primarily associated with EEG delta, theta, and alpha variables; however, some beta and gamma associations were also implicated. Furthermore, general linear models informed by these EEG variables were able to predict self-reported scores with varying degrees of success, representing between 48% and 54% of variance in fatigue scores. Significance: Self-reported fatigue/sleepiness scores of train drivers were predicted with varying degrees of success (dependent upon the self-reported fatigue/sleepiness measure) by alterations to monopolar delta, theta, and alpha band activity variables, indicating EEG as a potential indicator for fatigue/sleepiness in train drivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.