Previous works have shown that a minimum yield strength s0 of 58 MPa for leadcalcium- tin anodes of 6 mm thickness and a nominal composition of 0.7% Ca and 1.3% Sn are required to avoid early deformations and distortions during their operation in copper electrowinning cell. This s0 value for the anodes is associated with a terminal cold rolling process and a further precipitation hardening prior to their installation in the electrowinning cells. The objectives of the present work are to determine the alloy recrystallization temperature according to Ca and Sn contents, the maximum cold rolling temperature and the aging time required to obtain the desired mechanical quality. The results indicate that recrystallization temperature ranges between 120 and 150°C, according to the anode composition. To reach the desired deformation and precipitation hardening and consequently a yield strength of 58 MPa, the maximum cold rolling temperature is 45°C and the minimum aging time, 30 days.
The mining industry is facing emerging challenges as a result of the increase in energy consumption and environmental demands. These facts have promoted the use of renewable energy sources, such as wind, geothermal and, mainly, solar energy. This paper discusses the role of solar energy (UV-VIS-NIR) in leaching processes, evaluating its potential application in metal extraction from sulfide minerals, based on photochemical mechanisms that promote the regeneration of ferric iron or the so called ferrous iron cycling. The present paper discusses the possibility that ultraviolet, visible light and near infrared irradiation (e.g., sunlight provided) can assist the leaching processes in two main ways: by the oxidation of sulfide minerals through in-situ generated Fenton-like reactions, and by the photochemical activation of semiconductor minerals that contain transition metals (Fe, Cu, and Cr, among others). Thus, this paper provides theoretical support to move towards the future application of photoleaching, which consist of a leaching process assisted by UV, VIS, and NIR irradiation. This technology can be considered a promising mineral processing route, using direct photochemical solar energy that can reduce the energy consumption (electricity, fuels) and the environmental impact, opening an opportunity for an alternative method of metal extraction from sulfide ores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.