In recent years, probiotics have attracted public attention and transformed the social perception of microorganisms, convening a beneficial role/state on human health. With aging, the immune system, body physiology, and intestinal microbiota tend to change unfavorably, resulting in many chronic conditions. The immune-mediated disorders can be linked to intestinal dysbiosis, consequently leading to immune dysfunctions and a cluster of conditions such as asthma, autoimmune diseases, eczema, and various allergies. Probiotic bacteria such as Lactobacillus and Bifidobacterium species are considered probiotic species that have a great immunomodulatory and anti-allergic effect. Moreover, recent scientific and clinical data illustrate that probiotics can regulate the immune system, exert anti-viral and anti-tumoral activity, and shields the host against oxidative stress. Additionally, microbiota programming by probiotic bacteria can reduce and prevent the symptoms of respiratory infections and ameliorate the neurological status in humans. This review describes the most recent clinical findings, including safe probiotic therapies aiming to medicate respiratory infections, allergies, cancer, and neurological disorders due to their physiological interconnection. Subsequently, we will describe the major biological mechanism by which probiotic bacteriotherapy expresses its anti-viral, anti-allergic, anticancer, and neuro-stimulatory effects.
The Campylobacter genus is the leading cause of human gastroenteritis, with the consumption of contaminated poultry meat as the main route of infection. Probiotic bacteria, such as Lactobacillus , Bacillus , Escherichia coli Nissle, and Bifidobacterium species, have a great immunomodulatory capacity and exhibit antipathogenic effects through various molecular mechanisms. Reducing Campylobacter levels in livestock animals, such as poultry, will have a substantial benefit to humans as it will reduce disease transmissibility through the food chain. Moreover, probiotic-based strategies might attenuate intestinal inflammatory processes, which consequently reduce the severity of Campylobacter disease progression. At a molecular level, probiotics can also negatively impact on the functionality of various Campylobacter virulence and survival factors (e.g., adhesion, invasion), and on the associated colonization proteins involved in epithelial translocation. The current review describes recent in vitro , in vivo , and preclinical findings on probiotic therapies, aiming to reduce Campylobacter counts in poultry and reduce the pathogen's virulence in the avian and human host. Moreover, we focused in particular on probiotics with known anti- Campylobacter activity seeking to understand the biological mechanisms involved in their mode of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.