Abasic sites (apurinic/apyrimidinic, AP sites) are the most common DNA lesions generated by both spontaneous and induced base loss. In a previous study we have shown that circular plasmid molecules containing multiple AP sites are efficiently repaired by Chinese hamster extracts in an in vitro repair assay. An average patch size of 6.6 nucleotides for a single AP site was calculated. To define the exact repair patch, a circular DNA duplex with a single AP site was constructed. The repair synthesis carried out by hamster and human cell extracts was characterized by restriction endonuclease analysis of the area containing the lesion. The results indicate that, besides the repair events involving the incorporation of a single nucleotide at the lesion site, repair synthesis occurred also 3' to the AP site and involved a repair patch of approximately 7 nucleotides. This alternative repair pathway was completely inhibited by the presence in the repair reaction of a polyclonal antibody raised against human proliferating cell nuclear antigen. These data give the first evidence that mammalian cell extracts repair natural AP sites by two distinct pathways: a single nucleotide gap filling reaction targeted at the AP site and a proliferating cell nuclear antigen-dependent pathway that removes a short oligonucleotide containing the abasic site and 3'-flanking nucleotides.
Xeroderma pigmentosum (XP) C is involved in the recognition of a variety of bulky DNA-distorting lesions in nucleotide excision repair. Here, we show that XPC plays an unexpected and multifaceted role in cell protection from oxidative DNA damage. XP-C primary keratinocytes and fibroblasts are hypersensitive to the killing effects of DNA-oxidizing agents and this effect is reverted by expression of wild-type XPC. Upon oxidant exposure, XP-C primary keratinocytes and fibroblasts accumulate 8,5 0 -cyclopurine 2 0 -deoxynucleosides in their DNA, indicating that XPC is involved in their removal. In the absence of XPC, a decrease in the repair rate of 8-hydroxyguanine (8-OH-Gua) is also observed. We demonstrate that XPC-HR23B complex acts as cofactor in base excision repair of 8-OH-Gua, by stimulating the activity of its specific DNA glycosylase OGG1. In vitro experiments suggest that the mechanism involved is a combination of increased loading and turnover of OGG1 by XPC-HR23B complex. The accumulation of endogenous oxidative DNA damage might contribute to increased skin cancer risk and account for internal cancers reported for XP-C patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.