The science of tropical dendrochronology is now emerging in regions where tree-ring dating had previously not been considered possible. Here, we combine wood anatomical microsectioning techniques and radiocarbon analysis to produce the first tree-ring chronology with verified annual periodicity for a new dendrochronological species, Neltuma alba (commonly known as “algarrobo blanco”) in the tropical Andes of Bolivia. First, we generated a preliminary chronology composed of six trees using traditional dendrochronological methods (i.e., cross-dating). We then measured the 14C content on nine selected tree rings from two samples and compared them with the Southern Hemisphere (SH) atmospheric 14C curves, covering the period of the bomb 14C peak. We find consistent offsets of 5 and 12 years, respectively, in the calendar dates initially assigned, indicating that several tree rings were missing in the sequence. In order to identify the tree-ring boundaries of the unidentified rings we investigated further by analyzing stem wood microsections to examine anatomical characteristics. These anatomical microsections revealed the presence of very narrow terminal parenchyma defining several tree-ring boundaries within the sapwood, which was not visible in sanded samples under a stereomicroscope. Such newly identified tree rings were consistent with the offsets shown by the radiocarbon analysis and allowed us to correct the calendar dates of the initial chronology. Additional radiocarbon measurements over a new batch of rings of the corrected dated samples resulted in a perfect match between the dendrochronological calendar years and the 14C dating, which is based on good agreement between the tree-ring 14C content and the SH 14C curves. Correlations with prior season precipitation and temperature reveal a strong legacy effect of climate conditions prior to the current Neltuma alba growing season. Overall, our study highlights much potential to complement traditional dendrochronology in tree species with challenging tree-ring boundaries with wood anatomical methods and 14C analyses. Taken together, these approaches confirm that Neltuma alba can be accurately dated and thereby used in climatic and ecological studies in tropical and subtropical South America.
Abstract. Given the short span of instrumental precipitation records in the South American Altiplano, long-term hydroclimatic records are needed to understand the nature of climate variability and to improve the predictability of precipitation, a key natural resource for the socio-economic development in the Altiplano and adjacent arid lowlands. In this region grows Polylepis tarapacana, a long-lived tree species that is very sensitive to hydroclimatic changes and have been widely used for tree-ring studies in the central and southern Altiplano. However, in the northern sector of the Peruvian and Chilean Altiplano (16º–19º S) still exist a gap of hydroclimatic tree-ring records. Our study provides an overview of the temporal evolution of annual precipitation for the period 1625–2013 CE at the northern South American Altiplano, allowing for the identification of wet or dry periods based on a regional reconstruction composed by three P. tarapacana chronologies. An increase in the occurrence rate of extreme dry events, together with a decreasing trend in the reconstructed precipitation, have been recorded since the 1970s decade in the northern Altiplano within the context of the last ~four centuries. The average precipitation of the last 17-year stands out as the driest in our 389-years reconstruction. We revealed a temporal and spatial synchrony across the Altiplano region of wet conditions during the first half of the 19th century and the drought conditions since mid 1970s recorded by independent tree-ring based hydroclimate reconstructions and several paleoclimatic records based on other proxies available for the tropical Andes. The rainfall reconstruction provides also valuable information about the ENSO influences in the northern Altiplano precipitation. The spectral properties of the rainfall reconstruction showed strong imprints of ENSO variability at decadal, sub-decadal and inter-annual time-scale, in particular from the Pacific N3 sector. Overall, the remarkable recent reduction in precipitation in comparison with previous centuries, the increase in extreme dry events and the coupling between precipitation and ENSO variability reported by this work is essential information in the context of the growing demand for water resources in the Altiplano that will contribute to a better understanding of the vulnerability/resilience of the region to the projected evapotranspiration increase for the 21st century associated to global warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.