Enzyme-catalyzed preparation of polymers offers several potentially valuable advantages over the usual polymerization procedures. This paper summarizes our successful use of lipase-catalyzed polycondensations to prepare both a series of achiral [AA-BB]x polyesters from bis(2,2,2- trichloroethyl) alkanedioates and diols and of an optically active, epoxy-substituted polyester having a stereochemical purity estimated to be greater than 96%, from racemic bis(2,2,2-trichloroethyl) trans-3,4-epoxyhexanedioate and 1,4-butanediol. All of the reactions were carried out at ambient temperature in anhydrous, low to intermediate polarity, organic solvents such as ether, THF, 2-ethoxyethyl ether, dibenzyl ether, o-dichlorobenzene, or methylene choride, using porcine pancreatic lipase (PPL) as the catalyst. The molecular weight achieved by the polycondensation is limited by accumulation of the trihaloethanol that forms as the reaction progresses, probably because it frees enzyme-bound water permitting hydrolysis of the polymer to occur. This problem has been alleviated by using a high boiling solvent and removing the alcohol by placing the re'action mixture under vacuum.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.