Due to the emergence of multidrug-resistant pathogenic microorganisms, the search for new antimicrobial compounds plays an important role in current medicinal chemistry research. Inspired by lichen antimicrobial xanthones, a series of novel chlorinated xanthones was prepared using five chlorination methods (Methods A–E) to obtain different patterns of substitution in the xanthone scaffold. All the synthesized compounds were evaluated for their antimicrobial activity. Among them, 3-chloro-4,6-dimethoxy-1-methyl-9H-xanthen-9-one 15 showed promising antibacterial activity against E. faecalis (ATCC 29212 and 29213) and S. aureus ATCC 29213. 2,7-Dichloro-3,4,6-trimethoxy-1-methyl-9H-xanthen-9-one 18 revealed a potent fungistatic and fungicidal activity against dermatophytes clinical strains (T. rubrum, M. canis, and E. floccosum (MIC = 4–8 µg/mL)). Moreover, when evaluated for its synergistic effect for T. rubrum, compound 18 exhibited synergy with fluconazole (ΣFIC = 0.289). These results disclosed new hit xanthones for both antibacterial and antifungal activity.
The increasing resistance of pathogenic fungi to antifungal compounds and the reduced number of available drugs led to the search for therapeutic alternatives among natural products, including xanthones. The antifungal activity of 27 simple oxygenated xanthones was evaluated by determination of their minimal inhibitory concentration on clinical and type strains of Candida, Cryptococcus, Aspergillus and dermatophytes, and their preponderance on the dermatophytic filamentous fungi was observed. Furthermore, a simple and efficient HPLC method with UV detection to study the effect of the active xanthones on the biosynthesis of ergosterol was developed and validated. Using this methodology, the identification and quantification of fungal sterols in whole cells of Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus, and Trichophyton mentagrophytes were accomplished. In summary, 1,2-dihydroxyxanthone was found to be the most active compound against all strains tested, showing its effect on sterol biosynthesis by reducing the amount of ergosterol detected.
A series of thirteen xanthones 3–15 was prepared based on substitutional (appendage) diversity reactions. The series was structurally characterized based on their spectral data and HRMS, and the structures of xanthone derivatives 1, 7, and 8 were determined by single-crystal X-ray diffraction. This series, along with an in-house series of aminated xanthones 16–33, was tested for in-vitro antimicrobial activity against seven bacterial (including two multidrug-resistant) strains and five fungal strains. 1-(Dibromomethyl)-3,4-dimethoxy-9H-xanthen-9-one (7) and 1-(dibromomethyl)-3,4,6-trimethoxy-9H-xanthen-9-one (8) exhibited antibacterial activity against all tested strains. In addition, 3,4-dihydroxy-1-methyl-9H-xanthen-9-one (3) revealed a potent inhibitory effect on the growth of dermatophyte clinical strains (T. rubrum FF5, M. canis FF1 and E. floccosum FF9), with a MIC of 16 µg/mL for all the tested strains. Compounds 3 and 26 showed a potent inhibitory effect on two C. albicans virulence factors: germ tube and biofilm formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.