Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in AbstractThe increasing availability of financial market data at intraday frequencies has not only led to the development of improved volatility measurements but has also inspired research into their potential value as an information source for volatility forecasting. In this paper we explore the forecasting value of historical volatility (extracted from daily return series), of implied volatility (extracted from option pricing data) and of realised volatility (computed as the sum of squared high frequency returns within a day). First we consider unobserved components and long memory models for realised volatility which is regarded as an accurate estimator of volatility. The predictive abilities of realised volatility models are compared with those of stochastic volatility models and generalised autoregressive conditional heteroskedasticity models for daily return series. These historical volatility models are extended to include realised and implied volatility measures as explanatory variables for volatility. The main focus is on forecasting the daily variability of the Standard & Poor's 100 stock index series for which trading data (tick by tick) of almost seven years is analysed. The forecast assessment is based on the hypothesis of whether a forecast model is outperformed by alternative models. In particular, we will use superior predictive ability tests to investigate the relative forecast performances of some models. Since volatilities are not observed, realised volatility is taken as a proxy for actual volatility and is used for computing the forecast error. A stationary bootstrap procedure is required for computing the test statistic and its p-value. The empirical results show convincingly that realised volatility models produce far more accurate volatility forecasts compared to models based on daily returns. Long memory models seem to provide the most accurate forecasts.JEL classification: C22, C53, G15.
In this paper we compare the predictive abilility o f S t o c hastic Volatility (S V) models to that of volatility forecasts implied by option prices. We develop an SV model with implied volatility as an exogeneous variable in the variance equation which facilitates the use of statistical tests for nested models we refer to this model as the SVX model. The SVX model is then extended to a volatility model with persistence adjustment term and this we c a l l t h e S V X + model. This class of SV models can be estimated by quasi maximum likelihood methods but the main emphasis will be on methods for exact maximum likelihood using Monte Carlo importance sampling methods. The performance of the models is evaluated, both within sample and out-of-sample, for daily returns on the Standard & Poor's 100 index. Similar studies have been undertaken with GARCH models where ndings were initially mixed but recent research has indicated that implied volatility provides superior forecasts. We nd that implied volatility outperforms historical returns in-sample but that the latter contains incremental information in the form of stochastic shocks incorporated in the SVX models. The out-of-sample volatility forecasts are evaluated against daily squared returns and intradaily squared returns for forecasting horizons ranging from 1 to 10 days. For the daily squared returns we obtain mixed results, but when we use intradaily squared returns as a measure of realised volatility we nd that the SVX + model produces the most accurate out-of-sample volatility forecasts and that the model that only utilises implied volatility performes the worst as its volatility forecasts are upwardly biased.
Aims and ScopeThe series will place particular focus on monographs, surveys, edited volumes, conference proceedings and handbooks on:• Nonlinear dynamic phenomena in economics and finance, including equilibrium, disequilibrium, optimizing and adaptive evolutionary points of view; nonlinear and complex dynamics in microeconomics, finance, macroeconomics and applied fields of economics.• Econometric and statistical methods for analysis of nonlinear processes in economics and finance, including computational methods, numerical tools and software to study nonlinear dependence, asymmetries, persistence of fluctuations, multiple equilibria, chaotic and bifurcation phenomena.• Applications linking theory and empirical analysis in areas such as macrodynarnics, microdynamics, asset pricing, financial analysis and portfolio analysis, international economics, resource dynamics and environment, industrial organization and dynamics of technical change, labor economics, demographics, population dynamics, and game theory.The target audience of this series includes researchers at universities and research and policy institutions, students at graduate institutions, and practitioners in economics, finance and international economics in private or government institutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.