2005
DOI: 10.1016/j.jempfin.2004.04.009
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

7
214
3

Year Published

2010
2010
2023
2023

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 466 publications
(224 citation statements)
references
References 67 publications
7
214
3
Order By: Relevance
“…As shown in Table 1, the sample mean of crude oil returns is quite small in comparison with its standard deviation (volatility); thus, we set the conditional mean μ t to equal 0 in this paper, following Koopman et al (2005), among others. Another linear GARCH-class model is the IGARCH model developed by Engle and Bollerslev (1986), which can capture infinite persistence in the conditional variance.…”
Section: Linear Garch-class Modelsmentioning
confidence: 99%
“…As shown in Table 1, the sample mean of crude oil returns is quite small in comparison with its standard deviation (volatility); thus, we set the conditional mean μ t to equal 0 in this paper, following Koopman et al (2005), among others. Another linear GARCH-class model is the IGARCH model developed by Engle and Bollerslev (1986), which can capture infinite persistence in the conditional variance.…”
Section: Linear Garch-class Modelsmentioning
confidence: 99%
“…whereσ 2 T is the value of realised volatility at T andδ is the quasi-maximum likelihood estimate of δ (see Koopman et al 2005). Similar expressions of the one-day-ahead variance forecasts for the other models can be deduced.…”
Section: Forecastingmentioning
confidence: 81%
“…In this paper, we use the 5-min squared returns (from www.price-data.com) to calculate the measure of realised volatility proposed by Martens (2002) (15) contain, respectively, the values of the modified LjungBox statistic for the return series and for the squared return series. * means that the corresponding value is significant at a 5% significance level and used in Koopman et al (2005), that consists on scaling the sum of 5-min returns byσ…”
Section: Intradaily Data: Realised Volatilitymentioning
confidence: 99%
“…We deal with two economic loss functions. Koopman et al (2005) compare the predictive ability of historical volatility (extracted from daily returns), implied volatility (extracted from option data) and realized volatility (the cumulative sum of squared high frequency returns within a day) for forecasting daily variability of the S&P 100 stock index returns. Corrado and Truong (2007) augment the GJR-GARCH model of Glosten et al (1993) by intraday high-low price range and VIX in order to investigate their additional information for improving GJR-GARCH volatility forecasting accuracy.…”
Section: Introductionmentioning
confidence: 99%