The limit of infinite width allows for substantial simplifications in the analytical study of overparameterized neural networks. With a suitable random initialization, an extremely large network is well approximated by a Gaussian process, both before and during training. In the present work, we establish a similar result for a simple stochastic architecture whose parameters are random variables. The explicit evaluation of the output distribution allows for a PAC-Bayesian training procedure that directly optimizes the generalization bound. For a large but finite-width network, we show empirically on MNIST that this training approach can outperform standard PAC-Bayesian methods.
This work discusses how to derive upper bounds for the expected generalisation error of supervised learning algorithms by means of the chaining technique. By developing a general theoretical framework, we establish a duality between generalisation bounds based on the regularity of the loss function, and their chained counterparts, which can be obtained by lifting the regularity assumption from the loss onto its gradient. This allows us to re-derive the chaining mutual information bound from the literature, and to obtain novel chained information-theoretic generalisation bounds, based on the Wasserstein distance and other probability metrics. We show on some toy examples that the chained generalisation bound can be significantly tighter than its standard counterpart, particularly when the distribution of the hypotheses selected by the algorithm is very concentrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.