Polyetherimide (PEI) blends modified by either polycarbonate (PC) or polyethylene terephthalate glycol-modified (PETG) were prepared. The latter modifier (PETG) was an industrial grade widely used for fused deposition modelling (FDM) printing. PEI blends were compared to Ultem 9085, which is the standard PEI grade for FDM printing in advanced applications. All the blends were thoroughly characterized in terms of their rheological, morphological, thermomechanical and tensile properties. Ultem 9085 showed improved rheology for processing over standard PEI. PEI/PC blends with 10 wt % of modifier developed here closely matched the viscosity behavior of Ultem 9085. On the other hand, the blends with low PC content (i.e., less than 20 wt %) outperformed Ultem 9085 in terms of thermal and tensile properties. When PETG was added, similar tensile properties to Ultem 9085 were found. The immiscibility for PC contents higher than 20 wt % deteriorated the tensile properties, making it less attractive for applications, although melt viscosity decreased further for increasing PC contents.
Cellulose/PLA-based blends (up to 77 vol./vol.% of the added fibers) for applications in extrusion-based technology were realized in an internal mixer by setting different operating conditions. In particular, both the mixing time and temperature were increased in order to simulate a recycling operation (10 or 25 min, 170 or 190 °C) and gain information on the potential reuse of the developed systems. The torque measurements during the compound’s preparation, and the compound’s mechanical tensile features, both in the static and dynamic mode, were evaluated for each investigated composition. The final results confirmed a reduction of the torque trend over time for the PLA matrix, which was attributed to a possible degradation mechanism, and confirmed by infrared spectroscopy. The mechanical behaviour of the pristine polymer changed from elastoplastic to brittle, with a significant loss in ductility going from the lower mixing temperatures up to the higher ones for the longest time. Through the addition of cellulose fibers into the composite systems, a higher stabilization of the torque in the time and an improvement in the mechanical performance were always verified compared to the neat PLA, with a maximum increase in the Young modulus (+100%) and the tensile strength (+57%), and a partial recovery of the ductility.
Epoxy-based blends printable in a Liquid Crystal Display (LCD) printer were studied. Diglycidyl ether of bisphenol A (DGEBA) mixed with Diethyltoluene diamine (DETDA) was used due to the easy processing in liquid form at room temperature and slower reactivity until heated over 150 ° C. The DGEBA/DETDA resin was mixed with a commercial daylight photocurable resin used for LCD screen 3D printing. Calorimetric, dynamic mechanical and rheology testing were carried out on the resulting blends. The daylight resins showed to be thermally curable. Resin’s processability in the LCD printer was evaluated for all the blends by rheology and by 3D printing trials. The best printing conditions were determined by a speed cure test. The use of a thermal post-curing cycle after the standard photocuring in the LCD printer enhanced the glass transition temperature T g of the daylight resin from 45 to 137 ° C when post-curing temperatures up to 180 ° C were used. The T g reached a value of 174 ° C mixing 50 wt% of DGEBA/DETDA resin with the photocurable resin when high temperature cure cycle was used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.