Structural elements with thin-walled open cross-sections are common in metal and composite structures. These thin-walled beams have generally a good flexural strength with respect to the axis of greatest inertia, but a low flexural stiffness in relation to the second principal axis and a low torsional stiffness. These elements generally have an instability, which leads to a flexural-flexural-torsional coupling. The same applies to the vibration modes. Many of these structures work in a nonlinear regime, and a nonlinear formulation that takes into account large displacements and the flexural-flexural-torsional coupling is required. In this work a nonlinear beam theory that takes into account large displacements, warping and shortening effects, as well as flexural-flexural-torsional coupling is adopted. The governing nonlinear equations of motion are discretized in space using the Galerkin method and the discretized equations of motion are solved by the Runge-Kutta method. Special attention is given to the nonlinear oscillations of beams with low torsional stiffness and its influence on the bifurcations and instabilities of the structure, a problem not tackled in the previous literature on this subject. Time responses, phase portraits and bifurcation diagrams are used to unveil the complex dynamic.
Abstract. In this paper an inextensible cantilever beam subject to a concentrated axial load and a lateral harmonic excitation is investigated. Special attention is given to the effect of the axial load on the frequency-amplitude relation, bifurcations and instabilities of the beam. To this aim, the nonlinear integro-differential equations describing the flexural-flexural-torsional coupling of the beam are used, together with the Galerkin method, to obtain a set of discretized equations of motion, which are in turn solved by using the Runge-Kutta method. Both inertial and geometric nonlinearities are considered in the present analysis. Due to symmetries of the beam cross section, the beam exhibits a 1:1 internal resonance which has an important role on the nonlinear oscillations and bifurcation scenario. The results show that the axial load influences the stiffness of the beam changing its nonlinear behavior from hardening to softening. A detailed parametric analysis using several tools of nonlinear dynamics unveils the complex dynamic behavior of the beam in the parametric and external resonance regions. Bifurcations leading to multiple coexisting solutions are observed.
The three-dimensional motions of a clamped-free, inextensible beam subject to lateral harmonic excitation are investigated in this paper. Special attention is given to the nonlinear oscillations of beams with low torsional stiffness and its influence on the bifurcations and instabilities of the structure, a problem not tackled in the previous literature on this subject. For this, the nonlinear integro-differential equations describing the flexural-flexural-torsional couplings of the beam are used, together with the Galerkin method, to obtain a set of discretized equations of motion, which are in turn solved by numerical integration using the Runge-Kutta method. Both inertial and geometric nonlinearities are considered in the present analysis. By varying the beam stiffness parameters, and using several tools of nonlinear dynamics, a complex dynamic behavior of the beam is observed near the region where a 1:1:1 internal resonance occurs. In this region several bifurcations leading to multiple coexisting solutions, including planar and nonplanar motions are obtained. Finally, the paper shows how the tools of nonlinear dynamics can help in the understanding of the global integrity of the model, thus leading to a safe design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.