Pharmacopuncture, or herbal acupuncture, is a new form of therapy derived from combinations of two traditional therapeutic methods, herbal medicine and acupuncture therapy. To compare the efficacy between dexamethasone-pharmacopuncture (DP) and dexamethasone-oral administration (DO), the effect of DP was investigated in murine models. Anti-anaphylactic effects of dexamethasone treatments were investigated in compound 48/80-induced systemic anaphylactic reaction, ear swelling response, and passive cutaneous anaphylaxis (PCA). DP treatment significantly inhibited the compound 48/80-induced systemic anaphylactic reaction, ear swelling response, and PCA. The effects between DP and DO were on a similar level. These results indicate that DP can be used as an alternative method for DO in case of emergency.
Objectives : The optimal ultrasonic irradiation conditions were derived through laboratory-scale experiments to evaluate growth inhibition effect of Microcystis aeruginosa (M. aeruginosa), which is the main specie of Cyanobacterial Harmful Algal Blooms (CyanoHABs) in Republic of Korea.Methods : The experiment was conducted by changing ultrasonic frequency, intensity, and initial cell concentration to observe the growth inhibition effect of M. aerginosa. The experiment was performed using shielded acrylic reactor [20 cm (W) × 20 cm (L) × 30 cm (H)]. Experiments were conducted using large volume (7.2 L) of water samples with high concentrations of M. aeruginosa, and the ultrasonic irradiation time was fixed at 3 hours.Results and Discussion : In all experiments, pictorial view of M. aeruginosa samples, chlorophyll-a (Chl-a) and cell number of M. aerginosa were observed. As a result of ultrasonic irradiation on M. aeruginosa, the decrease in both Chl-a concentration and cell number of M. aeruginosa was monitored after sonication compared to the decrease during sonication. In addition, the rebound growth was confirmed after certain period of growth inhibition of M. aeruginosa. The optimal ultrasonic irradiation conditions for the growth inhibition of M. aeruginosa were obtained at the lower frequency and the higher intensity. Whereas algal growth inhibition was observed with high concentration (4.5 × 106 cells mL-1) of M. aeruginosa, algal growth inhibition was not monitored with low concentration (1.1 × 106 cells mL-1) of M. aeruginosa.Conclusion : Through this study, the algal growth inhibition by ultrasonic was effective. Although the growth inhibition effect persisted for a certain period of time, subsequent regrowth was observed. Therefore, periodic ultrasonic irradiation is necessary for long-term growth inhibition of algal in field applications.
Objectives : To confirm both efficiency and sustainability of algal growth inhibition, various laboratory-scale experiments were conducted and the growth inhibitory effect of <i>Microcystis aeruginosa</i> (<i>M. aeruginosa</i>) was investigated through ultrasonic re-irradiation during the regrowth period after the first ultrasound irradiation.Methods : Experiments with different times of irradiation [i.e., control group A (0 hr), experimental group B (2 hr) applied with only the first ultrasound irradiation, and experimental group C (0.5 hr), D (1 hr), and E (1.5 hr) applied with both first and second irradiations] were performed.Results and Discussion : As a result of both Chlorophyll-<i>a</i> (Chl-<i>a</i>) concentration and cell number of <i>M. aeruginosa</i>, the experimental group (B) with only first ultrasound irradiation (2 hr) displayed rapid regrowth of algae after initial decrease whereas the experimental group (C, D, and E) with both first ultrasound irradiation (2 hr) and second ultrasound irradiation (0.5 hr, 1 hr, and 1.5 hr) confirmed the delay of algae regrowth. Based on the specific growth rate constant (<i>µ</i>) and first order decay rate constant (<i>k</i>), algal growth from the experimental groups (C, D, E) with the secondary ultrasound irradiation was more significantly inhibited due to repetitive inactivation of algae growth. According to the SEM and TEM results, damages to algae cells were clearly observed under the influence of ultrasound, and both decrease in gas vesicles and rupture of cell membrane in <i>M. aeruginosa</i> were also monitored.Conclusion : Through this study, the algae growth inhibitory effect by ultrasonic irradiations was confirmed, and the re-irradiation of ultrasound contributed to the repetitive inactivation of algae growth, indicating that the second ultrasonic irradiation time required to inhibit algal regrowth can be reduced compared to the first irradiation. Therefore, periodic ultrasonic irradiation is required for long-term inhibition of algae growth in stagnant waters, but the appropriate frequency of ultrasonic irradiation may vary depending on the influence of various complex factors such as the size of the stagnant waters, the frequency of algal blooms, water temperature, light irradiation, nutrients, flow rate, etc. Finally, many field studies under various conditions are warranted to establish an optimized ultrasound irradiation protocol.
Objectives:In order to recycle and resource waste glass, the feasibility of foam glass as filter media was evaluated, and column experiments using foam glass media were conducted to confirm the applicability as filter media in rain garden. Through this experiment, various design factors to be considered can be derived in application of foam glass media in the rain garden.Methods:Sieve analysis and SEM/EDS analysis were conducted to confirm the physicochemical properties of the foam glass. Column experiments filled with only foam glass and mixtures of sand and foam glass were conducted to simulate rain garden to evaluate the removal efficiency of suspended solids and turbidity using the foam glass media, head difference (<i>Δh</i>) and hydraulic conductivity (<i>K</i>) changes, and calculation of filtered suspended solids loading using both discrete and cumulative mass approach. Finally, comparison of filtration performance with various filter media used in LID facilities was performed to evaluate the feasibility of foam glass media in rain garden.Results and Discussion:Since foam glass media has a lower density than water, homogeneous particle size, and smooth surface with pores of various sizes, foam glass media effectively induces internal capture and external adsorption of suspended solids. Foam glass media has been applied to high suspended solids and turbidity removal efficiency. As the suspended solids inflow load increased, clogging occurred in the pores and the removal efficiency gradually decreased, but the foam glass media with lower density than water was continuously disturbed and rearranged due to the head difference energy, and some clogging were alleviated by rearrangement of pores and channels. The load of suspended solids in precipitated, adsorbed, and retained on the foam glass was calculated using the effluent sample (discrete) collected at regular time intervals and the continuously accumulated sample (cumulative) from the output. The filtered suspended solids load calculated using the cumulative mass approach was higher due to the estimation of the amounts of suspended solids remaining in the filtration column is lower because the samples (discrete) collected at regular time intervals from the output do not reflect the amount of suspended solids that change over time. Thus, the amounts of suspended solids removed through the filtration process can be much more accurately estimated using the cumulative samples. Finally, when comparing the removal efficiency with other filter media, foam glass can be used as excellent filter media with higher removal efficiency and greater lifespan.Conclusion:Foam glass media with smooth surface, pores of various sizes, and lower density than water can rearrange and regenerate pores to alleviate some clogging, resulting in high suspended solids and turbidity removal efficiency for a long period of time. Considering that the amount of suspended solids filtered is determined by various factors such as particle size and distribution, porosity, depth, linear velocity, and inflow load of the suspended solids, the feasibility test using foam glass media through long-term field experiments is warranted. The amounts of suspended solids removed through the filtration process can be much more accurately estimated using the cumulative samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.