Postharvest diseases cause losses in a wide variety of crops around the world. Irradiation, a useful nonchemical approach, has been used as an alternative treatment for fungicide to control plant fungal pathogens. For a preliminary study, ionizing radiations (gamma, X-ray, or e-beam irradiation) were evaluated for their antifungal activity against Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer through mycelial growth, spore germination, and morphological analysis under various conditions. Different fungi exhibited different radiosensitivity. The inhibition of fungal growth showed in a dose-dependent manner. Three fungal pathogens have greater sensitivity to the e-beam treatment compared to gamma or X-ray irradiations. The inactivation of individual fungal-viability to different irradiations can be considered between 3–4 kGy for B. cinerea and 1–2 kGy for P. expansum and R. stolonifer based on the radiosensitive and radio-resistant species, respectively. These preliminary data will provide critical information to control postharvest diseases through radiation.
Gamma irradiation (GI) is used as an effective nonchemical approach to inactive pathogens. This study investigated the antifungal effect of gamma irradiation and its combined treatment with a chlorine donor on this fungal pathogen, both in vitro and in vivo. This study emphasized that the integration of low-dose GI and a chlorine donor, NaDCC, exhibited a significant antifungal effect, and that its mechanisms are directly associated with membrane integrity of fungal spores, promising that GI has the potential to be an antifungal approach.
Gamma irradiation and NaDCC introduced to control of gray mold on cut rose flowers. Integration of gamma irradiation and NaDCC inhibited the fungal development. Combined treatment can be applied to preserve the quality of the cut rose flowers.
a b s t r a c tPostharvest diseases cause considerable losses to harvested crops. Among them, gray mold (Botrytis cinerea) is a major problem of exporting to cut rose flowers into Korea. Irradiation treatment is an alternative to phytosanitary purposes and a useful nonchemical approach to the control of postharvest diseases. Gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against B. cinerea on cut rose varieties, 'Shooting Star' and 'Babe'. The irradiating dose required to reduce the population by 90%, D 10 , was 0.99 kGy. Gamma irradiation showed complete inhibition of spore germination and mycelial growth of B. cinerea, especially 4.0 kGy in vitro. Antifungal activity of gamma irradiation on rose B. cinerea is a dose-dependent manner. A significant phytotoxicity such as bent neck in cut rose quality was shown from gamma irradiation at over 0.4 kGy (po0.05) in both varieties. Although there is no significant difference in both varieties for fresh weight, in the case of flower rate, 'Babe' shows more sensitivity than 'Shooting Star'. In vivo assays demonstrated that established doses in in vitro, over 4 kGy, could completely inactive fungal pathogens, but such high doses can cause severe flowers damage. Thus, to eliminate negative impact on their quality, gamma irradiation was evaluated at lower doses in combination with an eco-friendly chemical, sodium dichloroisocyanurate (NaDCC) to examine the inhibition of B. cinerea. Intriguingly, only the combined treatment with 0.2 kGy of gamma irradiation and 70 ppm of NaDCC exhibited significant synergistic antifungal activity against blue mold decay in both varieties. Together, these results suggest that a synergistic effect of the combined treatment with gamma irradiation and NaDCC can be efficiently used to control the postharvest diseases in cut rose flowers, and will provide a promising technology for horticulture products for exportation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.