A high-performance liquid chromatography tandem mass spectrometry method is described for the simultaneous determination of mycotoxins, including Ergot alkaloids (EAs), in 3 types of grains. The extraction of 23 mycotoxins was evaluated and performed by using a modified QuEChERS-based sample preparation procedure. The proposed method was fully validated on spiked grain samples (barley, wheat and oat) to assess the linearity, limit of detection (LOD) and limit of quantitation (LOQ), matrix effects, precision and recovery. After validation, this method was applied to 143 samples of various types of 3 grains from the Republic of Korea to survey the level of mycotoxin contamination in Republic of Korean grains. A total of 42 grain samples (29%) were contaminated with at least one of these mycotoxins at levels higher than the LOQ. The results demonstrated that the procedure was suitable for simultaneously determining these mycotoxins in cereals and could be performed for their routine analysis in mycotoxin laboratories.
Pesticides effectively reduce the population of various pests that harm crops and increase productivity, but leave residues that adversely affect health and the environment. Here, a simultaneous multicomponent analysis method based on ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) pretreated by the QuEChERS method was developed to control the maximum residual levels. Among the 140 pesticides with high frequency of detection in agricultural products in Gyeongnam region in Korea for 5 years, 12 pesticides with high detection frequency in sweet pepper were selected. The analytical method is validated, linearities are r2 > 0.999, limit of detection (LOD) ranges from 1.4 to 3.2 µg/kg, and limit of quantification (LOQ) ranges from 4.1 to 9.7 µg/kg, and the recovery rate was 81.7–99.7%. In addition, it was confirmed that a meaningful value of these parameters can be achieved by determining the measurement uncertainty. The results proved that parameters such as recovery rate and relative standard deviation of the analysis method were within international standards. Using the developed method, better and safer sweet peppers will be provided to consumers, and effective pesticide residue management will be possible by expanding to other agricultural products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.