This paper presents the development of a new compact three-axis compliant stage employing piezoelectric actuators and a new flexure structure. A proposed stage works out-of-plane (Z, θx, θy) direction. The stage consists of 4 amplification flexures mounted piezoelectric actuators. New structure of flexure reduces height and enhances dynamic performance of stage. To certify excellent performance of the stage, comparison accomplished between conventional amplification flexure and new compact bridge type flexure. Modeling and optimal design of new type nano positioning stage performed. The optimal design is executed on the geometric parameters of the proposed flexure structure using Sequential Quadratic Programming. Experiments are carried out to verify the static and dynamic performance of the stage. The proposed out-of-plane nano-positioning stage has a Z-directional motion range 190 μm and a θx, θy-directional motion range ±2 mrad. The resolution of the stage is 4 nm, 40 nrad, and 40 nrad in the Z-, θx-, and θy-directional motions, respectively. The size of stage is 150 × 150 × 30 mm(3).
Flexure mechanisms have been widely used for nanometer positioning systems. This article presents a novel conceptual design of an ultra-precision 3-degrees of freedom (XYθ(Z)) positioning system with nanometer precision. The main purpose of this novel stage design is for the application of measurement equipment, in particular biological specimens. The stage was designed as a hollow type and with a compact size for the inverted microscope. This stage includes piezoelectric transducer actuators, double compound amplification mechanisms, moving plate, and capacitor sensors. The double compound amplification mechanism was designed using a mathematical model and analyzed by the finite element method. Since the relationship between the variables of the hinge parameters and system performances are complicated, an optimization procedure was used to obtain the optimal design parameters, which maximized the system bandwidth. Based on the solution of the optimization problem, the design of the stage and FEM simulation results are presented. Finally, the stage was manufactured and tested.
The leaves of Perilla frutescens var. crispa (Lamiaceae)—known as ‘Jureum-soyeop’ or ‘Cha-jo-ki’ in Korean, ‘ZI SU YE’ in Chinese, and ‘Shiso’ in Japan—has been used as a medicinal herb. Recent gamma irradiated mutation breeding on P. frutescens var. crispa in our research group resulted in the development of a new perilla cultivar, P. frutescens var. crispa (cv. Antisperill; PFCA), which has a higher content of isoegomaketone. The leaves of PFCA were extracted by supercritical carbon dioxide (SC-CO2) extraction, and phytochemical investigation on this extract led to the isolation and identification of a new compound, 9-hydroxy-isoegomaketone [(2E)-1-(3-furanyl)-4-hydroxy-4-methyl-2-penten-1-one; 1]. Compound 1 exhibited inhibitory activity on nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW264.7 cells with an IC50 value of 14.4 μM. The compounds in the SC-CO2 extracts of the radiation mutant cultivar and the original plant were quantified by high-performance liquid chromatography with diode array detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.