The entomopathogenic fungus Beauveria (Cordyceps) bassiana holds much promise as a pest biological control agent. B. bassiana produces at least three in vitro single cell infectious propagules, including aerial conidia, vegetative cells termed blastospores and submerged conidia, that display different morphological, biochemical and virulence properties. Populations of aerial conidia, blastospores and submerged conidia were produced on agar plates, rich liquid broth cultures and under conditions of nutrient limitation in submerged cultures, respectively. cDNA libraries were generated from mRNA isolated from each B. bassiana cell type and ∼2500 5′ end sequences were determined from each library. Sequences derived from aerial conidia clustered into 284 contigs and 963 singlets, with those derived from blastospores and submerged conidia forming 327 contigs with 788 singlets, and 303 contigs and 1079 contigs, respectively. Almost half (40–45 %) of the sequences in each library displayed either no significant similarity (e value >10−4) or similarity to hypothetical proteins found in the NCBI database. The expressed sequence tag dataset also included sequences representing a significant portion of proteins in cellular metabolism, information storage and processing, transport and cell processes, including cell division and posttranslational modifications. Transcripts encoding a diverse array of pathogenicity-related genes, including proteases, lipases, esterases, phosphatases and enzymes producing toxic secondary metabolites, were also identified. Comparative analysis between the libraries identified 2416 unique sequences, of which 20–30 % were unique to each library, and only ∼6 % of the sequences were shared between all three libraries. The unique and divergent representation of the B. bassiana transcriptome in the cDNA libraries from each cell type suggests robust differential gene expression profiles in response to environmental conditions.
Abbreviations: COX3, cytochrome c oxidase subunit 3; MELAS, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes; MERRF, myoclonus epilepsy with ragged-red fibers; mtDNA, mitochondrial DNA; NAION, non-arteritic anterior ischemic optic neuropathy; ND5, NADH dehydrogenase subunit 5; rCRS, revised Cambridge reference sequence
AbstractMitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a genetically heterogeneous mitochondrial disorder with variable clinical symptoms. Here, from the sequencing of the entire mitochondrial genome, we report a Korean MELAS family harboring two homoplasmic missense mutations, which were reported 9957T>C (Phe251Leu) transition mutation in the cytochrome c oxidase subunit 3 (COX3) gene and a novel 13849A>C (Asn505His) transversion mutation in the NADH dehydrogenase subunit 5 (ND5) gene. Neither of these mutations was found in 205 normal controls. Both mutations were identified from the proband and his mother, but not his father. The patients showed cataract symptom in addition to MELAS phenotype. We believe that the 9957T>C mutation is pathogenic, however, the 13849A>C mutation is of unclear significance. It is likely that the 13849A>C mutation might function as the secondary mutation which increase the expressivity of overlapping phenotypes of MELAS and cataract. This study also demonstrates the importance of full sequencing of mtDNA for the molecular genetic understanding of mitochondrial disorders.
Mitochondrial diseases are clinically and genetically heterogeneous disorders, which make the exact diagnosis and classification difficult. The purpose of this study was to identify pathogenic mtDNA mutations in 61 Korean unrelated families (or isolated patients) with MELAS or MERRF. In particular, the mtDNA sequences were completely determined for 49 patients. From the mutational analysis of mtDNA obtained from blood, 5 confirmed pathogenic mutations were identified in 17 families, and 4 unreported pathogenically suspected mutations were identified in 4 families. The m.3243A>G in the tRNA Leu(UUR) was predominantly observed in 10 MELAS families, and followed by m.8344A>G in the tRNA Lys of 4 MERRF families. Most pathogenic mutations showed heteroplasmy, and the rates were considerably different within the familial members. Patients with a higher rate of mutations showed a tendency of having more severe clinical phenotypes, but not in all cases. This study will be helpful for the molecular diagnosis of mitochondrial diseases, as well as establishment of mtDNA database in Koreans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.