Orientation of emitting dipoles is one of the most important material properties influencing the efficiency of organic light-emitting diodes (OLEDs). Recently, even globular-shaped Ir complexes, especially heteroleptic Ir complexes, have been reported to have horizontal emitting dipole orientation (EDO) to improve the external quantum efficiency (EQE) over 30%. Still the relationship between molecular structure of Ir complexes and their EDO has not been fully understood yet. Here, we report that substituents at the para-position of the pyridine in the main ligands of Ir complexes play a pivotal role inducing the orientation of heteroleptic Ir complexes. Substitution of aliphatic and aromatic functional moieties at the position leads to high horizontal emitting dipole orientation with the horizontal dipole ratio up to 86.5% to realize unprecedentedly high-efficiency yellow and green OLEDs, with EQEs of 38% and 36%, respectively. Elongated and planar substituents with high electrostatic potential enlarge the interacting surface region between Ir complex and host molecules, resulting in stacking Ir complexes parallel to the film surface.
Two asymmetric anthracene-based organic molecules, NDHPEA and TNDHPEA, were prepared without or with a thiophene spacer between the anthracene and naphthalene units. These asymmetric oligomers displayed different degrees of coplanarity, as evidenced by differences in the dihedral angles calculated by using DFT. Differential scanning calorimetry and XRD studies were used to probe the crystallization characteristics and molecular packing structures in the active layers. The coplanarity of the molecules in the asymmetric structure significantly affected the crystallization behavior and the formation of crystalline domains in the solid state. The small-molecule crystalline properties were correlated with the device physics by determining the J-V characteristics and hole mobilities of the devices.
A new random copolymer consisting of similarly shaped donor-acceptor building blocks of diketopyrrolopyrrole-selenophene-vinylene-selenophene (DPP-SVS) and DPP-thiophene-vinylene-thiophene (DPP-TVT) is designed and synthesized. The resulting P-DPP-SVS(5)-TVT(5) with an equal molecular ratio of the two building blocks produced significantly enhanced solubility when compared to that of the two homopolymers, PDPP-SVS and PDPP-TVT. More importantly, despite the maximum segmental randomness of the PDPP-SVS(5)-TVT(5) copolymer, its crystalline perfectness and preferential orientation are outstanding, even similar to those of the homopolymers thanks to the similarity of the two building blocks. This unique property produces a high charge carrier mobility of 1.23 cm V s of PDPP-SVS(5)-TVT(5), as determined from polymer field-effect transistor (PFET) measurements. The high solubility of PDPP-SVS(5)-TVT(5) promotes formulation of high-viscosity solutions which could be successfully processed to fabricate large-areal PFETs onto hydrophobically treated 4 in. wafers. A total of 269 individual PFETs are fabricated. These devices exhibit extremely narrow device-to-device deviations without a single failure and demonstrate an average charge carrier mobility of 0.66 cm V s with a standard deviation of 0.064. This is the first study to report on successfully realizing large-areal reproducibility of high-mobility polymeric semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.