A multiresidue analytical method was developed and validated for screening and confirming the presence of performance-enhancing drugs. A total of 210 substances from diverse classes of prohibited substances were successfully identified with an analytical run time of 10 min.
UDP-glucuronosyltransferase (UGT)-mediated drug-drug interactions are commonly evaluated during drug development. We present a validated method for the simultaneous evaluation of drugmediated inhibition of six major UGT isoforms, developed in human liver microsomes through the use of pooled specific UGT probe substrates (cocktail assay) and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The six probe substrates used in this assay were estradiol (UGT1A1), chenodeoxycholic acid (UGT1A3), trifluoperazine (UGT1A4), 4-hydroxyindole (UGT1A6), propofol (UGT1A9), and naloxone (UGT2B7). In a cocktail incubation, UGT1A1, UGT1A9, and UGT2B7 activities were substantially inhibited by other substrates. This interference could be eliminated by dividing substrates into two incubations: one containing estradiol, trifluoperazine, and 4-hydroxyindole, and the other containing chenodeoxycholic acid, propofol, and naloxone. Incubation mixtures were pooled for the simultaneous analysis of glucuronyl conjugates in a single LC-MS/MS run. The optimized cocktail method was further validated against single-probe substrate assays using compounds known to inhibit UGTs. The degree of inhibition of UGT isoform activities by such known inhibitors in this cocktail assay was not substantially different from that in single-probe assays. This six-isoform cocktail assay may be very useful in assessing the UGT-based drug-interaction potential of candidates in a drug-discovery setting.
A sensitive and rapid method based on liquid chromatography-triple-quadrupole tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) has been developed and validated for the screening and confirmation of 44 exogenous anabolic steroids (29 parent steroids and 15 metabolites) in human urine. The method involves an enzymatic hydrolysis, liquid-liquid extraction, and detection by LC-MS/MS. A triple-quadrupole mass spectrometer was operated in positive ESI mode with selected reaction monitoring (SRM) mode for the screening and product ion scan mode for the confirmation. The protonated molecular ions were used as precursor ions for the SRM analysis and product ion scan. The intraday and interday precisions of the target analytes at concentrations of the minimum required performance levels for the screening were 2-14% and 2-15%, respectively. The limits of detection for the screening and confirmation method were 0.1-10 ng/mL and 0.2-10 ng/mL, respectively, for 44 steroids. This method was successfully applied to analysis of urine samples from suspected anabolic steroid abusers.
A simple and accurate liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed and validated for the quantitative determination of ephedrine, pseudoephedrine, methylephedrine, cathine, salbutamol, morphine and epitestosterone in human urine. Urine samples were spiked with internal standard and diluted with acetonitrile. After centrifugation, the supernatants were directly analyzed by LC/MS/MS using the selected reaction monitoring (SRM) mode. The linearity, intra- and inter-day precision, accuracy, limit of detection (LOD) and limit of quantification (LOQ) were evaluated and the method was found to be accurate and reproducible for the quantitation of threshold substances. When the method was applied to the analysis of blind urine samples for the proficiency test, the results were close to the nominal concentrations, within 87.7-106.6% of nominal values, suggesting that the developed methods can be successfully applied to routine doping analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.