Hormonal variations during the menstrual cycle (MC) may influence trainability of strength. We investigated the effects of a follicular phase-based strength training (FT) on muscle strength, muscle volume and microscopic parameters, comparing it to a luteal phase-based training (LT).Eumenorrheic women without oral contraception (OC) (N = 20, age: 25.9 ± 4.5 yr, height: 164.2 ± 5.5 cm, weight: 60.6 ± 7.8 kg) completed strength training on a leg press for three MC, and 9 of them participated in muscle biopsies. One leg had eight training sessions in the follicular phases (FP) and only two sessions in the luteal phases (LP) for follicular phase-based training (FT), while the other leg had eight training sessions in LP and only two sessions in FP for luteal phase-based training (LT). Estradiol (E2), progesterone (P4), total testosterone (T), free testosterone (free T) and DHEA-s were analysed once during FP (around day 11) and once during LP (around day 25). Maximum isometric force (Fmax), muscle diameter (Mdm), muscle fibre composition (No), fibre diameter (Fdm) and cell nuclei-to-fibre ratio (N/F) were analysed before and after the training intervention.T and free T were higher in FP compared to LP prior to the training intervention (P < 0.05). The increase in Fmax after FT was higher compared to LT (P <0.05). FT also showed a higher increase in Mdm than LT (P < 0.05). Moreover, we found significant increases in Fdm of fibre type ΙΙ and in N/F only after FT; however, there was no significant difference from LT. With regard to change in fibre composition, no differences were observed between FT and LT. FT showed a higher gain in muscle strength and muscle diameter than LT.As a result, we recommend that eumenorrheic females without OC should base the periodization of their strength training on their individual MC.
Manchado C, Pers J, Navarro F, Han A, Sung E, Platen P. Time-motion analysis in women's team handball: importance of aerobic performance. J. Hum. Sport Exerc. Vol. 8, No. 2, pp. 376-390, 2013. Women's handball is a sport, which has seen an accelerated development over the last decade. Data on movement patterns in combination with physiological demands are nearly nonexistent in the literature. The aim of this study was twofold: first, to analyze the horizontal movement pattern, including the sprint acceleration profiles, of individual female elite handball players and the corresponding heart rates (HRs) during a match and secondly to determine underlying correlations with individual aerobic performance. Players from one German First League team (n = 11) and the Norwegian National Team (n = 14) were studied during one match using the Sagit system for movement analysis and Polar HR monitoring for analysis of physiological demands. Mean HR during the match was 86 % of maximum HR (HRmax). With the exception of the goalkeepers (GKs, 78 % of HRmax), no position-specific differences could be detected. Total distance covered during the match was 4614 m (2066 m in GKs and 5251 m in field players (FPs)). Total distance consisted of 9.2 % sprinting, 26.7 % fast running, 28.8 % slow running, and 35.5 % walking. Mean velocity varied between 1.9 km/h (0.52 m/s) (GKs) and 4.2 km/h (1.17 m/s) (FPs, no position effect). Field players with a higher level of maximum oxygen uptake (VȮ2max) executed run activities with a higher velocity but comparable percentage of HRmax as compared to players with lower aerobic performance, independent of FP position. Acceleration profile depended on aerobic performance and the field player's position. In conclusion, a high VȮ2max appears to be important in top-level international women's handball. Sprint and endurance training should be conducted according to the specific demands of the player's position.
The purpose of this study was to investigate the difference effect of estrogen on muscle tone of medial and lateral thigh muscle during ovulation (OV). Twenty-eight untrained eumenorrheic healthy women tested muscle stiffness and frequency of vastus medialis, vastus lateralis, semitendinosus, and biceps femoris during menstrual cycle (MC). MC were divided into menses (MS), OV, and luteal phase (LP). The muscle frequency of vastus medialis and semitendinosus were significant higher in OV (13.83±1.58 Hz, 15.62±2.39 Hz) than LP (13.18±0.85 Hz, 14.67± 1.62 Hz). Also the muscle stiffness of vastus medialis and semitendinosus were significant higher in OV (211.74±46.03 N/m, 241.95±48.35 N/m) than LP (184.26±26.09 N/m, 215.42±35.29 N/m). The present study showed the highest muscle stiffness and frequency at OV and this might be due to the rapid increase of sole hormone in estrogen. Especially, medial part of quadriceps and hamstrings might be influenced during the MC with high concentration of estrogen at OV.
The purpose of this study was to examine the influence of ovulation (OV) on dynamic balance in young female. Thirty-two eumenorrheic healthy women participated in Biodex Balance System (BBS) test for postural stability and a limit of stability menstrual cycle. BBS was tested in the menses (MS), OV, and luteal phase (LP). The limits of stabilities (total, forward-left, forward-right, backward-left, and backward-right) were significantly higher in the OV (total, 61.44±14.77; forward-left, 67.50± 15.17; forward-right, 69.50±14.43; backward-left, 64.00±20.32; and back-ward-right, 69.06±13.59) than in the MS (total, 55.44±14.63; forward-left, 60.00±15.98; forward-right, 62.17±9.78; backward-left, 57.83±19.09; and backward-right, 57.28±13.73). Furthermore, the LP (65.11±13.79) was a significantly higher limit of stability than MS (57.28±13.73) during back-ward-right. The present study showed that estrogen negatively influences postural stability. The postural sway in limits of stabilities (total, forward-left, forward-right, backward-left, and backward-right) were significantly the greatest in the OV. Since there is a different postural stability between MS, OV, and LP, this should be taken into account when devising training programs to avoid risk factor of fall and joint injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.