Graphs are data structures that effectively represent relational data in the real world. Graph representation learning is a significant task since it could facilitate various downstream tasks, such as node classification, link prediction, etc. Graph representation learning aims to map graph entities to low-dimensional vectors while preserving graph structure and entity relationships. Over the decades, many models have been proposed for graph representation learning. This paper aims to show a comprehensive picture of graph representation learning models, including traditional and state-of-the-art models on various graphs in different geometric spaces. First, we begin with five types of graph embedding models: graph kernels, matrix factorization models, shallow models, deep-learning models, and non-Euclidean models. In addition, we also discuss graph transformer models and Gaussian embedding models. Second, we present practical applications of graph embedding models, from constructing graphs for specific domains to applying models to solve tasks. Finally, we discuss challenges for existing models and future research directions in detail. As a result, this paper provides a structured overview of the diversity of graph embedding models.
The demand prediction is a critical issue for the film industry. As the social media, such as Twitter and Facebook, gains momentum of late, considerable efforts are being dedicated to prediction and analysis of hit movies based on unstructured text data. For prediction of trends found in commercially successful films, the correlations between the amount of data and hit movies may be analyzed by estimating the data variation by period while opinion mining that assigns sentiment polarity score to data may be employed. However, it is not possible to understand why the audience chooses a certain movie or which attribute of a movie is preferred by using such a quantitative approach. This has limited the efforts to identify factors driving a movie's commercial success. In this regard, this study aims to investigate a movie's attributes that reflect the interests of the audience. This would be done by extracting topic keywords that represent the contents of Twits through frequency measurement based on the collected Twitter data while analyzing responses displayed by the audience. The objective is to propose factors driving a movie's commercial success.■ keyword :|Big Data|Social Media|Movie Box Office|Twitter|Topic|
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.