This study aims to validate whether the research performance of scholars correlates with how the scholars work together. Although the most straightforward approaches are centrality measurements or community detection, scholars mostly participate in multiple research groups and have different roles in each group. Thus, we concentrate on the subgraphs of co-authorship networks rooted in each scholar that cover (i) overlapping of the research groups on the scholar and (ii) roles of the scholar in the groups. This study calls the subgraphs "collaboration patterns" and applies subgraph embedding methods to discover and represent the collaboration patterns. Based on embedding the collaboration patterns, we have clustered scholars according to their collaboration styles. Then, we have examined whether scholars in each cluster have similar research performance, using the quantitative indicators. The coherence of the indicators cannot be solid proofs for validating the correlation between collaboration and performance. Nevertheless, the examination for clusters has exhibited that the collaboration patterns can reflect research styles of scholars. This information will enable us to predict the research performance more accurately since the research styles are more consistent and sustainable features of scholars than a few high-impact publications.
Graphs are data structures that effectively represent relational data in the real world. Graph representation learning is a significant task since it could facilitate various downstream tasks, such as node classification, link prediction, etc. Graph representation learning aims to map graph entities to low-dimensional vectors while preserving graph structure and entity relationships. Over the decades, many models have been proposed for graph representation learning. This paper aims to show a comprehensive picture of graph representation learning models, including traditional and state-of-the-art models on various graphs in different geometric spaces. First, we begin with five types of graph embedding models: graph kernels, matrix factorization models, shallow models, deep-learning models, and non-Euclidean models. In addition, we also discuss graph transformer models and Gaussian embedding models. Second, we present practical applications of graph embedding models, from constructing graphs for specific domains to applying models to solve tasks. Finally, we discuss challenges for existing models and future research directions in detail. As a result, this paper provides a structured overview of the diversity of graph embedding models.
Solar irradiance forecasting is fundamental and essential for commercializing solar energy generation by overcoming output variability. Accurate forecasting depends on historical solar irradiance data, correlations between various meteorological variables (e.g., wind speed, humidity, and cloudiness), and influences between the weather contexts of spatially adjacent regions. However, existing studies have been limited to spatiotemporal analysis of a few variables, which have clear correlations with solar irradiance (e.g., sunshine duration), and do not attempt to establish atmospheric contextual information from a variety of meteorological variables. Therefore, this study proposes a novel solar irradiance forecasting model that represents atmospheric parameters observed from multiple stations as an attributed dynamic network and analyzes temporal changes in the network by extending existing spatio-temporal graph convolutional network (ST-GCN) models. By comparing the proposed model with existing models, we also investigated the contributions of (i) the spatial adjacency of the stations, (ii) temporal changes in the meteorological variables, and (iii) the variety of variables to the forecasting performance. We evaluated the performance of the proposed and existing models by predicting the hourly solar irradiance at observation stations in the Korean Peninsula. The experimental results showed that the three features are synergistic and have correlations that are difficult to establish using single-aspect analysis.
A role model that supports career planning is important for authors in the academic area to improve research abilities. In this study, we discovered a role model in bibliographic networks based on two perspectives: (1) high research performance to be exemplary and (2) a similar research history that can be easily followed by authors. We assume that the year-wise subgraphs in the dynamic bibliographic network signify the ‘research history’. We discovered role models of authors in three steps: (1) learning vector representations of research history in dynamic bibliographic networks, (2) measuring the similarity of authors according to the research history and (3) visualising role models. With this process, we can recommend a reasonable role model whose research path the authors can easily follow. In addition, we verified the effectiveness of the research history embeddings and the accuracy of the recommended role model in a real data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.