Silica aerogels are excellent thermal and acoustic insulators because of interconnected open nanopores with more than 90% porosity and higher surface area. Silica aerogel is derived by sol-gel process and dried under super-critical, subcritical or ambient pressure conditions. Thin silica aerogel sheets could be effective thermal insulators but high fragility hinders the wider applications. We have successfully developed a synthesis method for thin, flexible, and non-fragile aerogel sheets with excellent hydrophobicity, lower thermal conductivity, and non-combustible properties via ambient drying method. The silica aerogel sheets prepared compose of silica aerogel powder, fiber glass chopped strands, and solvent-based binder. Aerogel thin insulation sheets of thickness 164 μm were prepared by pressing through rollers using aerogel paste composed of aerogel powder, fiber glass strands, and binders. The thermal conductivity values obtained were between 0.02~0.63 W/mK at temperature 25~400°C, contact angle θ = 121' , weight loss 3.91% when heated up to 800°C in air, dielectric voltage breakdown 3.67 kV, dielectric strength 6.37 kV/mm and tensile strength of 2.65 N/mm². The overall thermal, electrical, and mechanical evaluation of aerogel thin insulation sheet showed they have higher potential to replace existing thick and bulky aerogel composites as thermal and electrical insulators in aviation, automobiles, electronics, and high power batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.