The autofrettage process enhances the carrying capacity and fatigue lifetime of pressure vessels by increasing their residual stress. A compound cylinder was introduced in order to increase residual stress. An autofrettaged compound cylinder can resist a higher pressure than a single cylinder having the same dimension. This residual stress can be measured through experimental or calculation processes. In this study, residual stress analysis of an autofrettaged compound cylinder was conducted. The elastic-perfectly plastic and strain hardening models were investigated. The residual stress distribution of the autofrettaged compound cylinder with shrink fit tolerance was predicted. Shrink fit is a very efficient way to extend compressive residual stress. The compressive residual stress of the strain-hardening model is smaller than that of the elastic-perfectly plastic model because of the Bauschinger effect. The compressive residual stress of the strain hardening model decreased by up to 80% overstrain level.
A program for the residual stress analysis of an autofrettaged compound cylinder is designed using a Matlab graphical user interface (GUI) and program design technique. The high-pressure vessels are autofrettaged in order to increase their operating pressure and fatigue life. An autofrettage process causes plastic expansion of the inner section of the cylinder, adding residual compressive stress to the bore after relaxation. Such a compound cylinder is produced via a shrink-fit procedure that incorporates a monobloc tube that has previously undergone autofrettage. This paper presents a simple and visual tool to calculate the residual stress and describe the distribution of residual stress for both the elastic-perfectly plastic model and the strain-hardening model.
Radioactive material is used in the various fields. The numbers of transport for radioactive material have been gradually increased in both domestic and international regions. The safety of the cask should be secured to safely transport of radioactive material. The Korean atomic law and the IAEA safety standards prescribe regulations for the safe transport of radioactive material. The cask for spent fuel is comprised of the body and the impact limiter. In this study, the empirical equation of the cask impact force was proposed based on the dimensional analysis. Using this empirical equation the characteristics of the impact limiter were analyzed. The results are also validated by comparing with the previous results of the impact area method and the finite element analysis. The present method can be used to predict the impact force of the cask.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.