In spite of recent significant research into various two-dimensional (2D) materials after the emergence of graphene, the development of a new 2D material that provides both high mobility and an appropriate energy band gap (which are crucial for various device applications) remains elusive. In this report, we demonstrate that the carrier transport behaviour of 2D Ti2CTx, which belongs to the family of 2D transition metal carbides and nitrides, can be tuned by modifying the surface group Tx (-OH, -F, and -O). Our results show that 2D Ti2C(OH)xFy and Ti2COx films can be obtained via simple chemical treatment, thermal annealing, and mechanical exfoliation processes. For the first time, we study the carrier transport properties of 2D Ti2CTx field effect transistors (FETs), obtaining the high field effect carrier mobilities of 10(4) cm(2) V(-1) s(-1) at room temperature. The temperature dependent resistivity of the Ti2COx film exhibits semiconductor like Arrhenius behaviour at zero gate voltage, from which we estimate the energy gap of 80 meV. One interesting feature of the FETs based on transition metal carbides is that the field effect mobility at room temperature is less sensitive to the measured transport gaps, which may arise from the dominant charge transport of activated carriers over the narrow energy gaps of the transition metal carbides. Our results open up the possibility that new 2D materials with high mobilities and appropriate band gaps can be achieved, and broaden the range of electronic device applications of Ti2CTx films.
We report the preparation of thickness-controlled few-layer black phosphorus (BP) films through the modulated plasma treatment of BP flakes. Not only does the plasma treatment control the thickness of the BP film, it also removes the chemical degradation of the exposed oxidized BP surface, which results in enhanced field-effect transistor (FET) performance. Our fabricated BP FETs were passivated with poly(methyl methacrylate) (PMMA) immediately after the plasma etching process. With these techniques, a high field-effect mobility was achieved, 1150 cm(2)/(V s), with an Ion/Ioff ratio of ∼10(5) at room temperature. Furthermore, a fabricated FET with plasma-treated few-layer BP that was passivated with PMMA was found to retain its I-V characteristics and thus to exhibit excellent environmental stability over several weeks.
Novel SnO(2)-In(2)O(3) heterostructured nanowires were produced via a thermal evaporation method, and their possible nucleation/growth mechanism is proposed. We found that the electronic conductivity of the individual SnO(2)-In(2)O(3) nanowires was 2 orders of magnitude better than that of the pure SnO(2) nanowires, due to the formation of Sn-doped In(2)O(3) caused by the incorporation of Sn into the In(2)O(3) lattice during the nucleation and growth of the In(2)O(3) shell nanostructures. This provides the SnO(2)-In(2)O(3) nanowires with an outstanding lithium storage capacity, making them suitable for promising Li ion battery electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.