This paper proposes a novel control framework for agile and robust bipedal locomotion, addressing model discrepancies between full-body and reduced-order models. Specifically, assumptions such as constant centroidal inertia have introduced significant challenges and limitations in locomotion tasks. To enhance the agility and versatility of fullbody humanoid robots, we formalize a Model Predictive Control (MPC) problem that accounts for the variable centroidal inertia of humanoid robots within a convex optimization framework, ensuring computational efficiency for real-time operations. In this formulation, we incorporate a centroidal inertia network designed to predict the variable centroidal inertia over the MPC horizon, taking into account the swing foot trajectories-an aspect often overlooked in ROM-based MPC frameworks. Moreover, we enhance the performance and stability of locomotion behaviors by synergizing the MPC-based approach with whole-body control (WBC). The effectiveness of our proposed framework is validated through simulations using our fullbody humanoid robot, DRACO 3 [1], demonstrating dynamic behaviors.
In congested urban conditions, the fuel economy of a vehicle can be highly affected by traffic flow and particularly, the immediately preceding (lead) vehicle. Thus, estimating the future trajectories of the lead vehicle is essential to optimize the following vehicle’s maneuvers for its fuel economy. This paper investigates the influence of speed forecasting on the performance of an ecological adaptive cruise control (eco-ACC) strategy for connected autonomous vehicles. The real-time speed predictor proposed in [1] is applied to forecast the future speed profiles of the lead vehicle over a short prediction horizon. Under the assumption that vehicle-to-vehicle (V2V) communications are available, V2V information from multiple lead vehicles is utilized in the prediction process. Eco-ACC is formulated in a model predictive control (MPC) framework to control the connected autonomous vehicle. The influence of the state prediction to the performance of eco-ACC in terms of fuel economy and acceleration is evaluated with different number of connected vehicles.
<div class="section abstract"><div class="htmlview paragraph">In recent studies, optimal control has shown promise as a strategy for enhancing the energy efficiency of connected autonomous vehicles. To maximize optimization performance, it is important to accurately predict constraints, especially separation from a vehicle in front. This paper proposes a novel prediction method for forecasting the trajectory of the nearest preceding car. The proposed predictor is designed to produce short to medium-length speed trajectories using a locally weighted polynomial regression algorithm. The polynomial coefficients are trained by using two types of information: (1) vehicle-to-vehicle (V2V) messages transmitted by multiple preceding vehicles and (2) vehicle-to-infrastructure (V2I) information broadcast by roadside equipment. The predictor’s performance was tested in a multi-vehicle traffic simulation platform, RoadRunner, previously developed by Argonne National Laboratory. The simulation results show that the proposed predictor’s improved predictions can reduce energy consumption by 5% over eco-driving with the baseline predictor.</div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.