In modern complex industrial processes, mode changes cause unplanned shutdowns, potentially shortening the lifespan of key equipment and incurring significant maintenance costs. To avoid this problem, a method that can detect the fault of equipment operating in various modes is required. Therefore, we propose a novel fault detection method that uses the k-nearest neighbor normalization-based weight local outlier factor (WLOF). The proposed method performs local normalization using neighbors to consider possible mode changes in the normal data and WLOF is used for fault detection. In contrast to statistical methods, such as principal component analysis (PCA) and independent component analysis (ICA), the local outlier factor (LOF) uses the density of neighbors. However, because LOF is significantly affected by the distance between its neighbors, the weight is multiplied proportionally to the distance between each neighbor to improve the fault detection performance of the LOF. The efficiency of the proposed method was evaluated using a multimode numerical case and a circulating fluidized bed boiler. The experimental results show that the proposed method outperforms conventional PCA, kernel PCA (KPCA), k-nearest neighbor (kNN), and LOF. In particular, the proposed method improved the detection accuracy by 20% compared with conventional methods. Therefore, the proposed method can be applied to a real process operating in multiple modes.
In manufacturing processes using computerized numerical control (CNC) machines, machine tools are operated repeatedly for a long period for machining hard and difficult-to-machine materials, such as stainless steel. These operating conditions frequently result in tool breakage. The failure of machine tools significantly degrades the product quality and efficiency of the target process. To solve these problems, various studies have been conducted for detecting faults in machine tools. However, the most related studies used only the univariate signal obtained from CNC machines. The fault-detection methods using univariate signals have a limitation in that multivariate models cannot be applied. This can restrict in performance improvement of the fault detection. To address this problem, we employed empirical mode decomposition to construct a multivariate dataset from the univariate signal. Subsequently, auto-associative kernel regression was used to detect faults in the machine tool. To verify the proposed method, we obtained a univariate current signal measured from the machining center in an actual industrial plant. The experimental results demonstrate that the proposed method successfully detects faults in the actual machine tools.
Particulate matter (PM) in the air can cause various health problems and diseases in humans. In particular, the smaller size of PM2.5 enable them to penetrate deep into the lungs, causing severe health impacts. Exposure to PM2.5 can result in respiratory, cardiovascular, and allergic diseases, and prolonged exposure has also been linked to an increased risk of cancer, including lung cancer. Therefore, forecasting the PM2.5 concentration in the surrounding is crucial for preventing these adverse health effects. This paper proposes a method for forecasting the PM2.5 concentration after 1 h using bidirectional long short-term memory (Bi-LSTM). The proposed method involves selecting input variables based on the feature importance calculated by random forest, classifying the data to assign weight variables to reduce bias, and forecasting the PM2.5 concentration using Bi-LSTM. To compare the performance of the proposed method, two case studies were conducted. First, a comparison of forecasting performance according to preprocessing. Second, forecasting performance between deep learning (long short-term memory, gated recurrent unit, and Bi-LSTM) and conventional machine learning models (multi-layer perceptron, support vector machine, decision tree, and random forest). In case study 1, The proposed method shows that the performance indices (RMSE: 3.98%p, MAE: 5.87%p, RRMSE: 3.96%p, and R2:0.72%p) are improved because weights are given according to the input variables before the forecasting is performed. In case study 2, we show that Bi-LSTM, which considers both directions (forward and backward), can effectively forecast when compared to conventional models (RMSE: 2.70, MAE: 0.84, RRMSE: 1.97, R2: 0.16). Therefore, it is shown that the proposed method can effectively forecast PM2.5 even if the data in the high-concentration section is insufficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.