An efficient synthesis involving a key aldol reaction and biological properties of 1,3-diphenyl-2-propen-1-ones 8- 20 is described. The in vitro activity for 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging of 10 and 11 was 2 times higher than that for resveratrol. Compounds 9 and 11 were the strongest in suppression of in vitro nitric oxide (NO) generation and antiexcitotoxicity. Molecular modeling proposes an electron-donating group at the para position of acetophenones that leads to a dramatic increase in the suppression of NO production.
Simple synthesis of modafinil derivatives and their biological activity are described. The key synthetic strategies involve substitution and coupling reactions. We determined the anti-inflammatory effects of modafinil derivatives in cultured BV2 cells by measuring the inhibition of nitrite production and expression of iNOS and COX-2 after LPS stimulation. It was found that for sulfide analogues introduction of aliphatic groups on the amide part (compounds 11a–d) resulted in lower anti-inflammatory activity compared with cyclic or aromatic moieties (compounds 11e–k). However, for the sulfoxide analogues, introduction of aliphatic moieties (compounds 12a–d) showed higher anti-inflammatory activity than cyclic or aromatic fragments (compounds 12e–k) in BV-2 microglia cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.