Elevated LDL-cholesterol (LDLc) levels are a major risk factor for cardiovascular disease and atherosclerosis. LDLc is cleared from circulation by the LDL receptor (LDLR). Proprotein convertase subtilisin/kexin 9 (PCSK9) enhances the degradation of the LDLR in endosomes/lysosomes, resulting in increased circulating LDLc. PCSK9 can also mediate the degradation of LDLR lacking its cytosolic tail, suggesting the presence of as yet undefined lysosomal-targeting factor(s). Herein, we confirm this, and also eliminate a role for the transmembrane-domain of the LDLR in mediating its PCSK9-induced internalization and degradation. Recent findings from our laboratory also suggest a role for PCSK9 in enhancing tumor metastasis. We show herein that while the LDLR is insensitive to PCSK9 in murine B16F1 melanoma cells, PCSK9 is able to induce degradation of the low density lipoprotein receptor-related protein 1 (LRP-1), suggesting distinct targeting mechanisms for these receptors. Furthermore, PCSK9 is still capable of acting upon the LDLR in CHO 13-5-1 cells lacking LRP-1. Conversely, PCSK9 also acts on LRP-1 in the absence of the LDLR in CHO-A7 cells, where re-introduction of the LDLR leads to reduced PCSK9-mediated degradation of LRP-1. Thus, while PCSK9 is capable of inducing degradation of LRP-1, the latter is not an essential factor for LDLR regulation, but the LDLR effectively competes with LRP-1 for PCSK9 activity. Identification of PCSK9 targets should allow a better understanding of the consequences of PCSK9 inhibition for lowering LDLc and tumor metastasis.
Macrophages were infected with virulent B. abortus strain 2308 or attenuated strain 19. Intracellular bacteria were recovered at different times after infection and their proteomes compared. The virulent strain initially reduced most biosynthesis and altered its respiration, adaptations reversed later in infection. The attenuated strain was unable to match the magnitude of the virulent strain’s adjustments. The results provide insight into mechanisms utilized by Brucella to establish intracellular infections.
Brucella virulence is linked to components of the cell envelope and tightly connected to the function of the BvrR/BvrS sensory-regulatory system. To quantify the impact of BvrR/BvrS on cell envelope proteins, we performed a label-free mass spectrometry-based proteomic analysis of spontaneously released outer membrane fragments from four strains of Brucella abortus (wild type virulent, avirulent bvrR- and bvrS- mutants as well as reconstituted virulent bvrR+ (bvrR-/pbvrR+)). We identified 167 differentially expressed proteins, of which 25 were assigned to the outer membrane. Approximately half of the outer membrane proteins decreased in abundance, whereas half increased. Notably, expression of five Omp3 family proteins decreased whereas five lipoproteins increased in the mutant strains. In the periplasmic space, by contrast, approximately 80% of the 60 differentially expressed proteins were increased in at least one avirulent mutant. Periplasmic proteins are primarily involved in substrate uptake and transport, and a uniform increase in this class may indicate a nutritional stress response, possibly a consequence of defective outer membrane function. Virtually all proteins reverted to wild type levels in the reconstituted virulent bvrR+ strain. We propose that the wide changes in cell envelope protein expression relate to the markedly avirulent phenotype of bvrR- and bvrS- mutants and that Brucella virulence depends on regulatory networks involving cell envelope and metabolism rather than on discrete virulence factors. This model may be relevant to other alpha-Proteobacteria harboring BvrR/BvrS orthologous systems known to be essential for parasitism or endosymbiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.