We have taken the first steps towards a complete reconstruction of the Mycobacterium tuberculosis regulatory network based on ChIP-Seq and combined this reconstruction with system-wide profiling of messenger RNAs, proteins, metabolites and lipids during hypoxia and re-aeration. Adaptations to hypoxia are thought to have a prominent role in M. tuberculosis pathogenesis. Using ChIP-Seq combined with expression data from the induction of the same factors, we have reconstructed a draft regulatory network based on 50 transcription factors. This network model revealed a direct interconnection between the hypoxic response, lipid catabolism, lipid anabolism and the production of cell wall lipids. As a validation of this model, in response to oxygen availability we observe substantial alterations in lipid content and changes in gene expression and metabolites in corresponding metabolic pathways. The regulatory network reveals transcription factors underlying these changes, allows us to computationally predict expression changes, and indicates that Rv0081 is a regulatory hub.
Each year millions of pulmonary nodules are discovered by computed tomography and subsequently biopsied. As the majority of these nodules are benign, many patients undergo unnecessary and costly invasive procedures. We present a 13-protein blood-based classifier that differentiates malignant and benign nodules with high confidence, thereby providing a diagnostic tool to avoid invasive biopsy on benign nodules. Using a systems biology strategy, 371 protein candidates were identified and a multiple reaction monitoring (MRM) assay was developed for each. The MRM assays were applied in a three-site discovery study (n = 143) on plasma samples from patients with benign and Stage IA cancer matched on nodule size, age, gender and clinical site, producing a 13-protein classifier. The classifier was validated on an independent set of plasma samples (n = 104), exhibiting a high negative predictive value (NPV) of 90%. Validation performance on samples from a non-discovery clinical site showed NPV of 94%, indicating the general effectiveness of the classifier. A pathway analysis demonstrated that the classifier proteins are likely modulated by a few transcription regulators (NF2L2, AHR, MYC, FOS) that are associated with lung cancer, lung inflammation and oxidative stress networks. The classifier score was independent of patient nodule size, smoking history and age, which are risk factors used for clinical management of pulmonary nodules. Thus this molecular test can provide a powerful complementary tool for physicians in lung cancer diagnosis.
Purpose We describe the outcome of the Biomarkers Consortium CSF Proteomics Project, a public-private partnership of government, academia, non-profit, and industry. The goal of this study was to evaluate a multiplexed mass spectrometry-based approach for the qualification of candidate Alzheimer’s Disease (AD) biomarkers using CSF samples from the AD Neuroimaging Initiative (ADNI). Experimental Design Reproducibility of sample processing, analytic variability, and ability to detect a variety of analytes of interest were thoroughly investigated. Multiple approaches to statistical analyses assessed whether panel analytes were associated with baseline pathology (MCI, AD) vs. Healthy Controls (CN) or associated with progression for MCI patients, and included: (i) univariate association analyses, (ii) univariate prediction models, (iii) exploratory multivariate analyses, and (iv) supervised multivariate analysis. Results A robust targeted mass spectrometry-based approach for the qualification of candidate AD biomarkers was developed. The results identified several peptides with potential diagnostic or predictive utility, with the most significant differences observed for the following peptides for differentiating (including peptides from Hemoglobin A (HBA), Hemoglobin B (HBB), and Superoxide dismutase (SODE)) or predicting (including peptides from Neuronal pentraxin-2 (NPTX2), Neurosecretory protein VGF (VGF), and Secretogranin-2 (SCG2)) progression vs. non-progression from mild cognitive impairment to AD. Conclusions and Clinical Relevance These data provide potential insights into the biology of CSF in AD and MCI progression and provide a novel tool for AD researchers and clinicians working to improve diagnostic accuracy, evaluation of treatment efficacy, and early diagnosis.
Macrophages were infected with virulent B. abortus strain 2308 or attenuated strain 19. Intracellular bacteria were recovered at different times after infection and their proteomes compared. The virulent strain initially reduced most biosynthesis and altered its respiration, adaptations reversed later in infection. The attenuated strain was unable to match the magnitude of the virulent strain’s adjustments. The results provide insight into mechanisms utilized by Brucella to establish intracellular infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.