We want to emphasize that thiosemicarbazones are not solely removing iron from the cells/organism. In contrast, they should be considered as iron-interacting drugs influencing diverse biological pathways in a complex and multi-faceted mode of action. Consequently, in addition to the discussion of physicochemical properties (e.g., complex stability, redox activity), this review contains an overview on the diversity of cellular thiosemicarbazone targets and drug resistance mechanisms. Antioxid. Redox Signal. 00, 000-000.
Six
morpholine-(iso)thiosemicarbazone hybrids HL1–HL6 and
their Cu(II) complexes with good-to-moderate solubility and
stability in water were synthesized and characterized. Cu(II) complexes [Cu(L1–6)Cl] (1–6) formed weak dimeric associates in the solid state,
which did not remain intact in solution as evidenced by ESI-MS. The
lead proligands and Cu(II) complexes displayed higher antiproliferative
activity in cancer cells than triapine. In addition, complexes 2–5 were found to specifically inhibit the growth of
Gram-positive bacteria Staphylococcus aureus with MIC50 values at 2–5 μg/mL. Insights
into the processes controlling intracellular accumulation and mechanism
of action were investigated for 2 and 5,
including the role of ribonucleotide reductase (RNR) inhibition, endoplasmic
reticulum stress induction, and regulation of other cancer signaling
pathways. Their ability to moderately inhibit R2 RNR protein in the
presence of dithiothreitol is likely related to Fe chelating properties
of the proligands liberated upon reduction.
Due to their significant biological activity, thiosemicarbazones (TSCs) are promising candidates for anticancer therapy. In part, the efficacy of TSCs is linked to their ability to chelate essential metal ions such as copper and iron. Triapine, the best-studied anticancer TSC, has been tested clinically with promising results in hematological diseases. During the last years, a novel subclass of TSCs with improved anticancer activity was found to induce paraptosis, a recently characterized form of cell death. The aim of this study was to identify structural and chemical properties associated with anticancer activity and paraptosis induction of TSCs.Results: When testing a panel of structurally related TSCs, compounds with nanomolar anticancer activity and paraptosis-inducing properties showed higher copper(II) complex solution stability and a slower reduction rate, which resulted in reduced redox activity. In contrast, TSCs with lower anticancer activity induced higher levels of superoxide that rapidly stimulated superoxide dismutase expression in treated cells, effectively protecting the cells from drug-induced redox stress.Innovation: Consequently, we hypothesize that in case of close Triapine derivatives, intracellular reduction leads to rapid dissociation of intracellularly formed copper complexes. In contrast, TSCs characterized by highly stable, slowly reducible copper(II) complexes are able to reach new intracellular targets such as the ER-resident protein disulfide isomerase.
Conclusions:The additional modes of actions observed with highly active TSC derivatives are based on intracellular formation of stable copper complexes, offering a new approach to combat (drug-resistant) cancer cells.
Five Ru(II)( 6 -toluene) complexes formed with 2-picolinic acid and its various derivatives have been synthesized and characterized. X-ray structures of four complexes are also
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.