Ischemic placental disease is a concept that links intrauterine growth retardation (IUGR) and preeclampsia (PE) back to insufficient remodeling of uterine spiral arteries. The rheological consequences of insufficient remodeling of uterine spiral arteries were hypothesized to mediate the considerably later manifestation of obstetric disease. However, the micro-rheology in the intervillous space (IVS) cannot be examined clinically and rheological animal models of the human IVS do not exist. Thus, an in silico approach was implemented to provide in vivo inaccessible data. The morphology of a spiral artery and the inflow region of the IVS were three-dimensionally reconstructed to provide a morphological stage for the simulations. Advanced high-end supercomputing resources were used to provide blood flow simulations at high spatial resolution. Our simulations revealed turbulent blood flow (high-velocity jets and vortices) combined with elevated blood pressure in the IVS and increased wall shear stress at the villous surface in conjunction with insufficient spiral artery remodeling only. Post-hoc histological analysis of uterine veins showed evidence of increased trophoblast shedding in an IUGR placenta. Our data support that rheological alteration in the IVS is a relevant mechanism linking ischemic placental disease to altered structural integrity and function of the placenta.
The villous trees of human placentas delineate the fetomaternal border and are complex three-dimensional (3D) structures. Thus far, they have primarily been analyzed as thin, two-dimensional (2D) histological sections. However, 2D sections cannot provide access to key aspects such as branching nodes and branch order. Using samples taken from 50 normal human placentas at birth, in the present study we show that analysis procedures for 3D reconstruction of neuronal dendritic trees can also be used for analyzing trees of human placentas. Nodes and their branches (e.g., branching hierarchy, branching angles, diameters, and lengths of branches) can be efficiently measured in whole-mount preparations of isolated villous trees using high-end light microscopy. Such data differ qualitatively from the data obtainable from histological sections and go substantially beyond the morphological horizon of such histological data. Unexpectedly, branching angles of terminal branches of villous trees varied inversely with the fetoplacental weight ratio, a widely used clinical parameter. Since branching angles have never before been determined in the human placenta, this result requires further detailed studies in order to fully understand its impact.
The villous tree of the human placenta is a complex three-dimensional (3D) structure with branches and nodes at the feto-maternal border in the key area of gas and nutrient exchange. Recently we introduced a novel, computer-assisted 3D light microscopic method that enables 3D topological analysis of branching patterns of the human placental villous tree. In the present study we applied this novel method to the 3D architecture of peripheral villous trees of placentas from patients with intrauterine growth retardation (IUGR placentas), a severe obstetric syndrome. We found that the mean branching angle of branches in terminal positions of the villous trees was significantly different statistically between IUGR placentas and clinically normal placentas. Furthermore, the mean tortuosity of branches of villous trees in directly preterminal positions was significantly different statistically between IUGR placentas and clinically normal placentas. We show that these differences can be interpreted as consequences of morphological adaptation of villous trees between IUGR placentas and clinically normal placentas, and may have important consequences for the understanding of the morphological correlates of the efficiency of the placental villous tree and their influence on fetal development.
Maternal depressive symptoms during pregnancy predict increased psychiatric problems in children. The underlying biological mechanisms remain unclear. Hence, we examined whether alterations in the morphology of 88 term placentas were associated with maternal depressive symptoms during pregnancy and psychiatric problems in 1.9–3.1-years old (Mean = 2.1 years) toddlers. Maternal depressive symptoms were rated biweekly during pregnancy with the Center of Epidemiological Studies Depression Scale (n = 86). Toddler psychiatric problems were mother-rated with the Child Behavior Checklist (n = 60). We found that higher maternal depressive symptoms throughout pregnancy [B = −0.24 Standard Deviation (SD) units: 95% Confidence Interval (CI) = −0.46; −0.03: P = 0.03; Mean difference = −0.66 SDs; 95% CI = −0.08; −1.23: P = 0.03; between those with and without clinically relevant depressive symptoms] were associated with lower variability in the placental villous barrier thickness of γ-smooth muscle actin-negative villi. This placental morphological change predicted higher total (B = −0.34 SDs: 95% CI = −0.60; −0.07: P = 0.01) and internalizing (B = −0.32 SDs: 95% CI = −0.56; −0.08: P = 0.01) psychiatric problems in toddlers. To conclude, our findings suggest that both maternal depressive symptoms during pregnancy and toddler psychiatric problems may be associated with lower variability in the villous membrane thickness of peripheral villi in term placentas. This lower heterogeneity may compromise materno-fetal exchange, suggesting a possible role for altered placental morphology in the fetal programming of mental disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.