Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of inflammatory responses and thus have important roles in the pathogenesis of inflammatory diseases. Here we describe a genome-wide association scan for sequence variants affecting eosinophil counts in blood of 9,392 Icelanders. The most significant SNPs were studied further in 12,118 Europeans and 5,212 East Asians. SNPs at 2q12 (rs1420101), 2q13 (rs12619285), 3q21 (rs4857855), 5q31 (rs4143832) and 12q24 (rs3184504) reached genome-wide significance (P = 5.3 x 10(-14), 5.4 x 10(-10), 8.6 x 10(-17), 1.2 x 10(-10) and 6.5 x 10(-19), respectively). A SNP at IL1RL1 associated with asthma (P = 5.5 x 10(-12)) in a collection of ten different populations (7,996 cases and 44,890 controls). SNPs at WDR36, IL33 and MYB that showed suggestive association with eosinophil counts were also associated with atopic asthma (P = 4.2 x 10(-6), 2.2 x 10(-5) and 2.4 x 10(-4), respectively). We also found that a nonsynonymous SNP at 12q24, in SH2B3, associated significantly (P = 8.6 x 10(-8)) with myocardial infarction in six different populations (6,650 cases and 40,621 controls).
We have compared the variable region 3 sequences from 10 human immunodeSciency virus type 1 (H1V-1)-infected infants to virus sequences from the corresponding mothers. The sequences were derived from DNA of uncultured peripheral blood mononuclear cells (PBMC), DNA ofcultured PBMC, and RNA from serum collected at or shortly after delivery. The infected infants, in contrast to the mothers, harbored homogeneous virus populations. Comparison of sequences from the children and clones derived from DNA of the corresponding mothers showed that the transmitted virus represented either a minor or a major virus population of the mother. In contrast to an earlier study, we found no evidence of selection of minor virus variants during transmission. Furthermore, the transmitted virus variant did not show any characteristic molecular features. In some cases the transmitted virus was more related to the virus RNA population of the mother and in other cases it was more related to the virus DNA population. This suggests that either cell-free or cell-associated virus may be transmitted. These data will help AIDS researchers to understand the mechanism of transmission and to plan strategies for prevention of transmission.
A sequence variant (rs7216389-T) near the ORMDL3 gene on chromosome 17q21 was recently found to be associated with childhood asthma. We sought to evaluate the effect of rs7216389-T on asthma subphenotypes and its correlation with expression levels of neighboring genes. The association of rs7216389-T with asthma was replicated in six European and one Asian study cohort (N¼4917 cases N¼34 589 controls). In addition, we found that the association of rs7216389-T was confined to cases with early onset of asthma, particularly in early childhood (age: 0-5 years OR¼1.51, P¼6.89 . 10 À9 ) and adolescence (age: 14-17 years OR¼1.71, P¼5.47 . 10 À9 ). A weaker association was observed for onset between 6 and 13 years of age (OR¼1.17, P¼0.035), but none for adult-onset asthma (OR¼1.07, P¼0.12). Cases were further stratified by sex, asthma severity and atopy status. An association with greater asthma severity was observed among early-onset asthma cases (P¼0.0012), but no association with sex or atopy status was observed among the asthma cases. An association between sequence variants and the expression of genes in the 17q21 region was assessed in white blood cell RNA samples collected from Icelandic individuals (n¼743). rs7216389 associated with the expression of GSDMB and ORMDL3 genes. However, other sequence variants showing a weaker association with asthma compared with that of rs7216389 were more strongly associated with the expression of both genes. Thus, the contribution of rs7216389-T to the development of asthma is unlikely to operate only through an impact on the expression of ORMDL3 or GSDMB genes.
The variable clinical response seen with most cancer immunotherapy suggests that there is a large interindividual variation in immunologic response to tumors. One of the key functional parameters of an immune response is the local production of cytokines. As a method to survey the immune status of tumor-infiltrating cells, we have investigated the constitutive expression of cytokine mRNA in biopsies from epithelial ovarian carcinomas by using a PCR-assisted mRNA amplification assay. Using a set of cytokine-specific primers for 10 different cytokines, we have found selective expression of interleukin 10 (IL-10), granulocyte-macrophage colony-stimulating factor, and interferon gamma mRNA in ovarian tumor tissue as compared to normal ovaries and ovarian tumor cell lines. Such differences could not be explained by the extent of T-cell infiltration, since comparing samples with the same intensity of T-cell receptor (TCR) constant region alpha-chain product from the tumor and normal biopsies demonstrated different cytokine patterns. No IL-2 gene expression was detected in the tumor biopsies. IL-2 mRNA, however, became expressed after stimulation of the tumor-derived cells via the CD3 molecule but not after growth in recombinant IL-2 alone. Using the same methodology, we also analyzed the TCR variable region beta-chain gene repertoire. No restriction or biased expression of these genes was observed.
Gene expression profiles were examined in freshly isolated peripheral blood mononuclear cells (PBMC) from two independent cohorts (training and test sets) of glucocorticoid (GC)-sensitive (n ؍ 64) and GC-resistant (n ؍ 42) asthma patients in search of genes that accurately predict responders and nonresponders to inhaled corticosteroids. A total of 11,812 genes were examined with high-density oligonucleotide microarrays in both resting PBMC (106 patients) and cells treated in vitro with IL-1 and TNF-␣ combined (88 patients), with or without GC. A total of 5,011 genes were expressed at significant levels in the PBMC, and 1,334 of those were notably up-regulated or down-regulated by IL-1͞TNF-␣ treatment. The expression changes of 923 genes were significantly reversed in GC responders in the presence of GC. The expression pattern of 15 of these 923 genes that most accurately separated GC responders (n ؍ 26) from the nonresponders (n ؍ 18) in the training set, based on the weighted voting algorithm, predicted the independent test set of equal size with 84% accuracy. The expression accuracy of these genes was confirmed by real-time-quantitative PCR, wherein 11 of the 15 genes predicted GC sensitivity at baseline with 84% accuracy, with one gene predicting at 81% in an independent cohort of 79 patients. We conclude that we have uncovered gene expression profiles in PBMC that predict clinical response to inhaled GC therapy with meaningful accuracy. Upon validation in an independent study, these results support the development of a diagnostic test to guide GC therapy in asthma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.