The monoterpene cyclase limonene synthase transforms geranyl diphosphate to a monocyclic olefin and constitutes the simplest model for terpenoid cyclase catalysis. (-)-4S-Limonene synthase preprotein from spearmint bears a long plastidial targeting sequence. Difficulty expressing the full-length preprotein in Escherichia coli is encountered because of host codon usage, inclusion body formation, and the tight association of bacterial chaperones with the transit peptide. The purified preprotein is also kinetically impaired relative to the mixture of N-blocked native proteins produced in vivo by proteolytic processing in plastids. Therefore, the targeting sequence, that precedes a tandem pair of arginines (R58R59) which is highly conserved in the monoterpene synthases, was removed. Expression of this truncated protein, from a vector that encodes a tRNA for two rare arginine codons (pSBET), affords a soluble, tractable 'pseudomature' form of the enzyme that is catalytically more efficient than the native species. Truncation up to and including R58, or substitution of R59, yields enzymes that are incapable of converting the natural substrate geranyl diphosphate, via the enzymatically formed tertiary allylic isomer 3S-linalyl diphosphate, to (-)-limonene. However, these enzymes are able to cyclize exogenously supplied 3S-linalyl diphosphate to the olefinic product. This result indicates a role for the tandem arginines in the unique diphosphate migration step accompanying formation of the intermediate 3S-linalyl diphosphate and preceding the final cyclization reaction catalyzed by the monoterpene synthases. The structural basis for this coupled isomerization-cyclization reaction sequence can be inferred by homology modeling of (-)-4S-limonene synthase based on the three-dimensional structure of the sesquiterpene cyclase epi-aristolochene synthase [Starks, C. M., Back, K., Chappell, J., and Noel, J. P. (1997) Science 277, 1815-1820].
Common sage (Salvia officinalis) produces an extremely broad range of cyclic monoterpenes bearing diverse carbon skeletons, including members of the p-menthane (1,8-cineole), pinane (␣-and -pinene), thujane (isothujone), camphane (camphene), and bornane (camphor) families. An homology-based polymerase chain reaction cloning strategy was developed and used to isolate the cDNAs encoding three multiproduct monoterpene synthases from this species that were functionally expressed in Escherichia coli.
In an insect, the tobacco hornworm Manduca sexta, the cerebral neuropeptide prothoracicotropic hormone (PTTH), the primary effector of postembryonic development, exists as two molecular forms. These two PTTH's elicit characteristic in vitro dose responses of activation of prothoracic glands from different developmental stages, an indication that during development the glands change in their sensitivity to the neurohormones. Both PTTH's are active in a specific in situ bioassay. Since they may be released in situ at stage-specific times to evoke distinctly different developmental responses, the PTTH neuroendocrine axis appears to be an effective system for determining the functions of molecular forms of a neurohormone in the regulation of growth and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.