ObjectiveStudies on the epidemiology of uveitis are rare and cohorts are small. We analyzed the frequencies of classified forms of uveitis in all patients at our center.MethodsWe studied 1916 consecutive patients with inflammatory eye disease. Data were analyzed regarding associated systemic disease, infection, ocular syndromes, anatomic localization, age, and sex.ResultsIn 59.1% of patients, a classified form of uveitis was observed: associated systemic diseases in 43.7%, the most frequent ones sarcoidosis (17.4%) and ankylosing spondylitis (16.8%); ocular syndromes in 34.3%, the most frequent HLA-B27-positive anterior uveitis (AU; 35.1%) and Fuchs uveitis syndrome (FUS; 34.3%); and infections in 22.4%, the most frequent herpetic infections (46.1%) and toxoplasmosis (31.5%). We found AU in 45.4% of patients (15.4% HLA-B27-positive AU and 11.3% FUS), intermediate uveitis in 22.9% (unclassified 53.7% and multiple sclerosis 10.3%), and posterior uveitis in 13.5% (24.7% toxoplasmosis). Panuveitis was diagnosed in 6.2% of cases (Behçet’s disease 12.6%; sarcoidosis 10.9%). The remaining 12.0% of cases showed extrauveal manifestations (scleritis, episcleritis, keratitis, optic neuritis, myositis, and orbital inflammation).ConclusionWe describe the largest cohort to date of consecutive patients from a specialized uveitis center. The high frequency of classified disease, nearly 60% in our clinic, shows the usefulness of an interdisciplinary approach, oriented on anatomic presentation.
Sebaceous gland neoplasias are the cutaneous manifestation of the Muir-Torre syndrome, which is known to be a phenotypical variant of hereditary nonpolyposis colorectal cancer. Both hereditary nonpolyposis colorectal cancer and Muir-Torre syndrome are caused by inherited DNA mismatch repair defects. As a prominent molecular genetic feature, all tumors associated with a DNA mismatch repair defect exhibit high microsatellite instability. So far, the frequency of DNA mismatch repair defects in patients selected solely on the basis of a sebaceous gland tumor has never been determined. In order to estimate this frequency, we assessed microsatellite instability with up to 10 microsatellite markers in a newly collected unselected series of 25 sebaceous gland neoplasias (six sebaceous adenomas, 16 sebaceous epitheliomas, three sebaceous carcinomas) in comparison to 32 sebaceous gland hyperplasias from unrelated patients. As many as 15 of the 25 sebaceous gland neoplasias (60%), but only one of the 32 sebaceous gland hyperplasias (3%), exhibited high microsatellite instability. Thus, in our study, the majority of patients with a sebaceous gland neoplasia in contrast to patients with a sebaceous gland hyperplasia are highly suspicious for an inherited DNA mismatch repair defect. On the basis of the subsequently collected tumor histories, nine of the 15 patients with a high microsatellite unstable sebaceous gland neoplasia were identified to have Muir-Torre syndrome. In none of these cases, however, were the clinical Amsterdam criteria for diagnosing hereditary nonpolyposis colorectal cancer fulfilled. In the sebaceous tumors of the remaining six patients, high microsatellite instability was an incidental finding. In two of these six patients, single relatives were known to be affected with internal cancer; however, their family histories were not suggestive of Muir-Torre syndrome or hereditary nonpolyposis colorectal cancer. In comparison with microsatellite instability screening studies in a variety of other randomly selected tumors, our study identifies sebaceous gland neoplasias as tumors with the highest frequency of high microsatellite instability reported so far, whereas sebaceous gland hyperplasia rarely exhibits high microsatellite instability. Therefore, screening for microsatellite instability in sebaceous gland neoplasias will be of great value in the detection of an inherited DNA mismatch repair defect, which predisposes to various types of internal cancers.
Bacterial Kidney Disease (BKD), which is caused by a Gram-positive, intracellular bacterial pathogen (Renibacterium salmoninarum), affects salmonids including Atlantic salmon (Salmo salar). However, the transcriptome response of Atlantic salmon to BKD remained unknown before the current study. We used a 44K salmonid microarray platform to characterise the global gene expression response of Atlantic salmon to BKD. Fish (∼54 g) were injected with a dose of R. salmoninarum (H-2 strain, 2 × 10 8 CFU per fish) or sterile medium (control), and then head kidney samples were collected at 13 days post-infection/injection (dpi). Firstly, infection levels of individuals were determined through quantifying the R. salmoninarum level by RNA-based TaqMan qPCR assays. Thereafter, based on the qPCR results for infection level, fish (n = 5) that showed no (control), higher (H-BKD), or lower (L-BKD) infection level at 13 dpi were subjected to microarray analyses. We identified 6,766 and 7,729 differentially expressed probes in the H-BKD and L-BKD groups, respectively. There were 357 probes responsive to the infection level (H-BKD vs. L-BKD). Several adaptive and innate immune processes were dysregulated in R. salmoninarum-infected Atlantic salmon. Adaptive immune pathways associated with lymphocyte differentiation and activation (e.g., lymphocyte chemotaxis, T-cell activation, and immunoglobulin secretion), as well as antigen-presenting cell functions, were shown to be differentially regulated in response to BKD. The infection level-responsive transcripts were related to several mechanisms such as the JAK-STAT signalling pathway, B-cell differentiation and interleukin-1 responses. Sixty-five microarray-identified transcripts were subjected to qPCR validation, and they showed the same fold-change direction as microarray results. The qPCRvalidated transcripts studied herein play putative roles in various immune processes including pathogen recognition (e.g., tlr5), antibacterial activity (e.g., hamp and camp), regulation of immune responses (e.g., tnfrsf11b and socs1), T-/B-cell differentiation (e.g., ccl4, irf1 and ccr5), T-cell functions (e.g., rnf144a, il13ra1b and tnfrsf6b), and Eslamloo et al. Atlantic Salmon Response to BKD antigen-presenting cell functions (e.g., fcgr1). The present study revealed diverse immune mechanisms dysregulated by R. salmoninarum in Atlantic salmon, and enhanced the current understanding of Atlantic salmon response to BKD. The identified biomarker genes can be used for future studies on improving the resistance of Atlantic salmon to BKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.