The present study investigated the potential role of stromal cell-derived factor 1 (SDF-1) in human intrathymic T-cell differentiation. Results show that SDF-1 is produced by human thymic epithelial cells from the subcapsular and medullary areas, and its receptor, CXCR4, is upregulated on CD34 ؉ precursor cells committed to the T-cell lineage.
contributed equally to this work. SummaryIn the present study, we have analysed the phenotype of EphB2 and/or EphB3 deficient thymocytes confirming and extending previous studies on the role of this family of molecules in T-cell differentiation. In all mutant thymuses statistically significant reduced cell contents were observed. This reduction of thymic cellularity correlated with increased proportions of apoptotic cells, largely both double negative (DN; CD4 ) CD8 ) ) and double positive (CD4 + CD8 + ) cells, and decreased proportions of DN cycling cells. Adult deficient thymuses also showed increased proportions of DN cells but not significant variations in the percentages of other thymocyte subsets. In absolute terms, the thymocyte number decreased significantly in all thymocyte compartments from the DN3 (CD44 ) CD25 + ) cell stage onward, without variations in the numbers of both DN1 (CD44 + CD25 ) ) and DN2 (CD44 + CD25 + ) cells. Remarkably, all these changes also occurred from the 15-day fetal EphB2 and/or EphB3 deficient mice, suggesting that adult phenotype results from the gradual accumulations of defects appearing early in the thymus ontogeny. As a reflection of thymus condition, a reduction in the number of T lymphocytes occurred in the peripheral blood and mesenteric lymph nodes, but not in spleen, maintaining the proportions of T-cell subsets defined by CD4/CD8 marker expression, in all cases.
Thymus development and function are dependent on the definition of different and graded microenvironments that provide the maturing T cell with the different signals that drive its maturation to a functional T lymphocyte. In these processes, cell-cell interactions, cell migration, and positioning are clues for the correct functioning of the organ. The Eph family of receptor tyrosine kinases and their ligands, the ephrins, has been implicated in all these processes by regulating cytoskeleton and adhesion functioning, but a systemic analysis of their presence and possible functional role in thymus has not yet been conducted. In this regard, the current study combines different experimental approaches for analyzing the expression of four members of the Eph A family and their ligands, ephrins A, in the embryonic and adult rat thymus. The patterns of Eph and ephrin expression in the distinct thymic regions were different but overlapping. In general, the studied Eph A were expressed on thymic epithelial cells, whereas ephrins A seem to be more restricted to thymocytes, although Eph A1 and ephrin A1 are expressed on both cell types. Furthermore, the supply of either Eph A-Fc or ephrin A-Fc fusion proteins to fetal thymus organ cultures interferes with T cell development, suggesting an important role for this family of proteins in the cell mechanisms that drive intrathymic T cell development.
In the present work, we have demonstrated in vivo an altered maturation of the thymic epithelium that results in defective T cell development which increases with age, in the thymus of Eph A4-deficient mice. The deficient thymi are hypocellular and show decreased proportions of double-positive (CD4+CD8+) cells which reach minimal numbers in 4-wk-old thymi. The EphA4 −/− phenotype correlates with an early block of T cell precursor differentiation that results in accumulation of CD44−CD25+ triple-negative cells and, sometimes, of CD44+CD25− triple-negative thymocytes as well as with increased numbers of apoptotic cells and an important reduction in the numbers of cycling thymocytes. Various approaches support a key role of the thymic epithelial cells in the observed phenotype. Thymic cytoarchitecture undergoes profound changes earlier than those found in the thymocyte maturation. Thymic cortex is extremely reduced and consists of densely packed thymic epithelial cells. Presumably the lack of forward Eph A4 signaling in the Eph A4 −/− epithelial cells affects their development and finally results in altered T cell development.
The Eph and ephrin families are involved in numerous developmental processes. Recently, an increasing body of evidence has related these families with some aspects of T cell development. In the present study, we show that the addition of either EphB2-Fc or ephrinB1-Fc fusion proteins to fetal thymus organ cultures established from 17-dayold fetal mice decreases the numbers of both double-positive (CD4 + CD8 + ) and singlepositive (both CD4 + CD8 -and CD4 -CD8 + ) thymocytes, in correlation with increased apoptosis. By using reaggregate thymus organ cultures formed by fetal thymic epithelial cells (TEC) and CD4 + CD8 + thymocytes, we have also demonstrated that ephrinB1-Fc proteins are able to disorganize the three-dimensional epithelial network that in vivo supports the T cell maturation, and to alter the thymocyte interactions. In addition, in an in vitro model, Eph/ephrinB-Fc treatment also decreases the formation of cell conjugates by CD4 + CD8 + thymocytes and TEC as well as the TCR-dependent signaling between both cell types. Finally, immobilized EphB2-Fc and ephrinB1-Fc modulate the anti-CD3 antibody-induced apoptosis of CD4 + CD8 + thymocytes in a process dependent on concentration. These results therefore support a role for Eph/ephrinB in the processes of development and selection of thymocytes as well as in the establishment of the three-dimensional organization of TEC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.