The increasingly meagre copper ore resources constitute one of the decisive factors influencing the price of this commodity. The demand for copper has been showing an accelerating trend since the Covid pandemic broke out. It is thereby imperative to estimate the future price movement of this material. The article focuses on a daily prediction of the forthcoming change in prices of copper on the commodity market. The research data were gathered from day-to-day closing historical prices of copper from commodity stock COMEX converted to a time series. The price is expressed in US Dollars per pound. The data were processed using artificial intelligence, recurrent neural networks, including the Long Short Term Memory layer. Neural networks have a great potential to predict this type of time series. The results show that the volatility in copper price during the monitored period was low or close to zero. We may thereby argue that neural networks foresee the first three months more accurately than the rest of the examined period. Neural structures anticipate copper prices from 4.5 to 4.6 USD to the end of the period in question. Low volatility that would last longer than one year would cut down speculators’ profits to a minimum (lower risk). On the other hand, this situation would bring about balance which the purchasing companies avidly seek for. However, the presented article is solely confined to a limited number of variables to work with, disregarding other decisive criteria. Although the very high performance of the experimental prediction model, there is always space for improvement – e.g. effectively combining traditional methods with advanced techniques of artificial intelligence.
What is the situation of the transport sector in the Czech Republic and what is its importance for the economy of the Czech Republic? How and to what extent do businesses operating in this sector influence the sector as such, and how many businesses in this sector have such influence? Additionally, what happens if the most important businesses in the transport sector go bankrupt, and which businesses are the most important ones? Searching for the answers to these questions is a subject of this contribution, focusing primarily on the cluster analysis using artificial neural networks (ANN), specifically with Kohonen networks, which represent the main method for processing a large volume of not only accounting data on transport companies. In this research, the dataset consists of the financial statements of transport companies for the years 2015–2018. The research part of the contribution deals mainly with the issue of the transport sector’s development in the years 2015–2018 with the companies operating in this sector and tries to identify the most important companies in terms of their importance for this sector. The results show that the whole transport sector is influenced mainly by the two largest companies, whose potential changes can affect companies themselves but to a great extent also the development of the whole transport sector. For the two companies, financial analysis is carried out using ratios, whose results show that despite the negative values of the important value generators of one of these companies, the company is still able to significantly influence the situation in the transport sector of the CR. This information is a clear guide for experts, development analysts, to determine the further development of the whole sector when focusing on the development of the two specific companies only. A question arises as to how the created model can be applied to other economic sectors, especially in other EU countries.
Artificial Intelligence (AI) is becoming more common in our daily life. One of the biggest segments of AI is used in business. Technologies are changing at a rapid pace and in unpredictable ways. The research was done by systematic literature of the most recent (2020-2022) academic articles from the database Scopus covering the usage of AI on social media. Dividing the find articles based on chosen criteria into categories such as social media platforms used for research and general AI usage on social media. The results show that the implementation of AI will become more and more inevitable for its variety of use on social media, like chatbots, detecting harmful behaviour, data analysis and strategy making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.