The increasingly meagre copper ore resources constitute one of the decisive factors influencing the price of this commodity. The demand for copper has been showing an accelerating trend since the Covid pandemic broke out. It is thereby imperative to estimate the future price movement of this material. The article focuses on a daily prediction of the forthcoming change in prices of copper on the commodity market. The research data were gathered from day-to-day closing historical prices of copper from commodity stock COMEX converted to a time series. The price is expressed in US Dollars per pound. The data were processed using artificial intelligence, recurrent neural networks, including the Long Short Term Memory layer. Neural networks have a great potential to predict this type of time series. The results show that the volatility in copper price during the monitored period was low or close to zero. We may thereby argue that neural networks foresee the first three months more accurately than the rest of the examined period. Neural structures anticipate copper prices from 4.5 to 4.6 USD to the end of the period in question. Low volatility that would last longer than one year would cut down speculators’ profits to a minimum (lower risk). On the other hand, this situation would bring about balance which the purchasing companies avidly seek for. However, the presented article is solely confined to a limited number of variables to work with, disregarding other decisive criteria. Although the very high performance of the experimental prediction model, there is always space for improvement – e.g. effectively combining traditional methods with advanced techniques of artificial intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.