Biglycan, a small leucine-rich proteoglycan, is a ubiquitous ECM component; however, its biological role has not been elucidated in detail. Here we show that biglycan acts in macrophages as an endogenous ligand of TLR4 and TLR2, which mediate innate immunity, leading to rapid activation of p38, ERK, and NF-kappaB and thereby stimulating the expression of TNF-alpha and macrophage inflammatory protein-2 (MIP-2). In agreement, the stimulatory effects of biglycan are significantly reduced in TLR4-mutant (TLR4-M), TLR2-/-, and myeloid differentiation factor 88-/- (MyD88-/-) macrophages and completely abolished in TLR2-/-/TLR4-M macrophages. Biglycan-null mice have a considerable survival benefit in LPS- or zymosan-induced sepsis due to lower levels of circulating TNF-alpha and reduced infiltration of mononuclear cells in the lung, which cause less end-organ damage. Importantly, when stimulated by LPS-induced proinflammatory factors, macrophages themselves are able to synthesize biglycan. Thus, biglycan, upon release from the ECM or from macrophages, can boost inflammation by signaling through TLR4 and TLR2, thereby enhancing the synthesis of TNF-alpha and MIP-2. Our results provide evidence for what is, to our knowledge, a novel role of the matrix component biglycan as a signaling molecule and a crucial proinflammatory factor. These findings are potentially relevant for the development of new strategies in the treatment of sepsis.
Growth-dependent regulation of rRNA synthesis is mediated by TIF-IA, a basal transcription initiation factor for RNA polymerase I. We inactivated the murine TIF-IA gene by homologous recombination in mice and embryonic fibroblasts (MEFs). TIF-IA-/- embryos die before or at embryonic day 9.5 (E9.5), displaying retardation of growth and development. In MEFs, Cre-mediated depletion of TIF-IA leads to disruption of nucleoli, cell cycle arrest, upregulation of p53, and induction of apoptosis. Elevated levels of p53 after TIF-IA depletion are due to increased binding of ribosomal proteins, such as L11, to MDM2 and decreased interaction of MDM2 with p53 and p19(ARF). RNAi-induced loss of p53 overcomes proliferation arrest and apoptosis in response to TIF-IA ablation. The striking correlation between perturbation of nucleolar function, elevated levels of p53, and induction of cell suicide supports the view that the nucleolus is a stress sensor that regulates p53 activity.
A new cardiotonic agent, (R)-[[4-(1,4,5,6-tetrahydro-4-methyl-6-oxo-3-pyridazinyl)-phenyl] hydrazono]propanedinitrile (Levosimendan), has been developed and screened for its ability to bind to cardiac troponin C. In perfused hearts, low concentrations of 0.03 or 0.1 mumol/L Levosimendan increased +dP/dt, but did not affect the speed of relaxation and produced only a slight increase in spontaneous heart rate in the hearts perfused with 0.1 mumol/L of the drug. In these same hearts, perfusion with 0.03 mumol/L Levosimendan did not alter the 32P incorporation into troponin I or C protein, whereas a slight but significant increase was noted for phospholamban, with no detectable change in tissue cAMP levels. Administration of 0.1 or 0.3 mumol/L Levosimendan significantly increased myocardial cAMP levels as well as the phosphorylation of phospholamban, troponin I, and C protein. Levosimendan (0.03 to 10 mumol/L) reversibly increased force generated by detergent-extracted fiber bundles over a range of submaximally activating free Ca2+ concentrations with no significant effect on maximum force or on Ca2+ binding to myofilament troponin C. There was no direct effect of Levosimendan on Ca2+ uptake by vesicles of sarcoplasmic reticulum (SR). In contrast, under conditions optimal for cAMP-dependent phosphorylation, Levosimendan slightly but significantly lowered the concentration of Ca2+, yielding half-maximal uptake rates by the SR vesicles. Our results indicate that at low concentrations Levosimendan acts preferably as a Ca2+ sensitizer, whereas at higher concentrations its action as a phosphodiesterase inhibitor contributes to the positive inotropic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.