In cycling cells, transcription of ribosomal RNA genes by RNA polymerase I (Pol I) is tightly coordinated with cell growth. Here, we show that the mammalian target of rapamycin (mTOR) regulates Pol I transcription by modulating the activity of TIF-IA, a regulatory factor that senses nutrient and growth-factor availability. Inhibition of mTOR signaling by rapamycin inactivates TIF-IA and impairs transcription-initiation complex formation. Moreover, rapamycin treatment leads to translocation of TIF-IA into the cytoplasm. Rapamycin-mediated inactivation of TIF-IA is caused by hypophosphorylation of Ser 44 (S44) and hyperphosphorylation of Ser 199 (S199). Phosphorylation at these sites affects TIF-IA activity in opposite ways, for example, phosphorylation of S44 activates and S199 inactivates TIF-IA. The results identify a new target for mTOR-signaling pathways and elucidate the molecular mechanism underlying mTOR-dependent regulation of rRNA synthesis.
Growth-dependent regulation of rRNA synthesis is mediated by TIF-IA, a basal transcription initiation factor for RNA polymerase I. We inactivated the murine TIF-IA gene by homologous recombination in mice and embryonic fibroblasts (MEFs). TIF-IA-/- embryos die before or at embryonic day 9.5 (E9.5), displaying retardation of growth and development. In MEFs, Cre-mediated depletion of TIF-IA leads to disruption of nucleoli, cell cycle arrest, upregulation of p53, and induction of apoptosis. Elevated levels of p53 after TIF-IA depletion are due to increased binding of ribosomal proteins, such as L11, to MDM2 and decreased interaction of MDM2 with p53 and p19(ARF). RNAi-induced loss of p53 overcomes proliferation arrest and apoptosis in response to TIF-IA ablation. The striking correlation between perturbation of nucleolar function, elevated levels of p53, and induction of cell suicide supports the view that the nucleolus is a stress sensor that regulates p53 activity.
The nucleolus represents an essential stress sensor for the cell. However, the molecular consequences of nucleolar damage and their possible link with neurodegenerative diseases remain to be elucidated. Here, we show that nucleolar damage is present in both genders in Parkinson's disease (PD) and in the pharmacological PD model induced by the neurotoxin 1,2,3,6-tetrahydro-1-methyl-4-phenylpyridine hydrochloride (MPTP). Mouse mutants with nucleolar disruption restricted to dopaminergic (DA) neurons show phenotypic alterations that resemble PD, such as progressive and differential loss of DA neurons and locomotor abnormalities. At the molecular level, nucleolar disruption results in increased p53 levels and downregulation of mammalian target of rapamycin (mTOR) activity, leading to mitochondrial dysfunction and increased oxidative stress, similar to PD. In turn, increased oxidative stress induced by MPTP causes mTOR and ribosomal RNA synthesis inhibition. Collectively, these observations suggest that the interplay between nucleolar dysfunction and increased oxidative stress, involving p53 and mTOR signaling, may constitute a destructive axis in experimental and sporadic PD.
Phosphorylation of transcription factors by mitogen-activated protein kinase (MAPK) cascades links cell signaling with the control of gene expression. Here we show that growth factors induce rRNA synthesis by activating MAPK-dependent signaling cascades that target the RNA polymerase I-specific transcription initiation factor TIF-IA. Activation of TIF-IA and ribosomal gene transcription is sensitive to PD98059, indicating that TIF-IA is targeted by MAPK in vivo. Phosphopeptide mapping and mutational analysis reveals two serine residues (S633 and S649) that are phosphorylated by ERK and RSK kinases. Replacement of S649 by alanine inactivates TIF-IA, inhibits pre-rRNA synthesis, and retards cell growth. The results provide a link between growth factor signaling, ribosome production, and cell growth, and may have a major impact on the mechanism of cell transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.