About a thousand genes in the human genome encode for membrane transporters. Among these, several solute carrier proteins (SLCs), representing the largest group of transporters, are still orphan and lack functional characterization. We reasoned that assessing genetic interactions among SLCs may be an efficient way to obtain functional information allowing their deorphanization. Here we describe a network of strong genetic interactions indicating a contribution to mitochondrial respiration and redox metabolism for SLC25A51/MCART1, an uncharacterized member of the SLC25 family of transporters. Through a combination of metabolomics, genomics and genetics approaches, we demonstrate a role for SLC25A51 as enabler of mitochondrial import of NAD, showcasing the potential of genetic interaction-driven functional gene deorphanization.
Botrytis cinerea is one of the most relevant plant pathogenic fungi. The first step during its infection process is the germination of the conidia. Here, we report on the first proteome analysis during the germination of B. cinerea conidia, where 204 spots showed significant differences in their accumulation between ungerminated and germinated conidia by two-dimensional polyacrylamide gel electrophoresis and qPCR. The identified proteins were grouped by gene ontology revealing that the infective tools are mainly preformed inside the ungerminated conidia allowing a quick fungal development at the early stages of conidial germination. From 118 identified spots, several virulence factors have been identified while proteins, such as mannitol-1-phosphate dehydrogenase, 6,7-dimethyl-8-ribityllumazine synthase or uracil phosphoribosyltransferase, have been disclosed as a new potential virulence factors in botrytis whose role in pathogenicity needs to be studied to gain new insights about the role of these proteins as therapeutic targets and virulence factors.
Botrytis cinerea is a model fungus for the study of phytopathogenicity that exhibits a wide arsenal of tools to infect plant tissues. Most of these factors are related to signal transduction cascades, in which membrane proteins play a key role as a bridge between environment and intracellular molecular processes. This work describes the first description of the membranome of Botrytis under different pathogenicity conditions induced by different plant-based elicitors: glucose and tomato cell wall (TCW). A discovery proteomics analysis of membrane proteins was carried out by mass spectrometry. A total of 2794 proteins were successfully identified, 46% of them were classified as membrane proteins based on the presence of transmembrane regions and lipidation. Further analyses showed significant differences in the membranome composition depending on the available carbon source: 804 proteins were exclusively identified when the fungus was cultured with glucose as a sole carbon source, and 251 proteins were exclusively identified with TCW. Besides, among the 1737 common proteins, a subset of 898 proteins presented clear differences in their abundance. GO enrichment and clustering interaction analysis revealed changes in the composition of membranome with increase of signalling function in glucose conditions and carbohydrate degradation process in TCW conditions. All MS data have been deposited in the ProteomeXchange with identifier PXD003099 (http://proteomecentral.proteomexchange.org/dataset/PXD003099).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.