Key Points• WT1 mRNA-electroporated DCs can prevent or delay relapse in 43% of patients with AML in remission after chemotherapy.• OS compares favorably with the new survival data from the Swedish Acute Leukemia Registry and correlates with molecular and WT1-specific CD8 1 T-cell responses.Relapse is a major problem in acute myeloid leukemia (AML) and adversely affects survival. In this phase 2 study, we investigated the effect of vaccination with dendritic cells (DCs) electroporated with Wilms' tumor 1 (WT1) messenger RNA (mRNA) as postremission treatment in 30 patients with AML at very high risk of relapse. There was a demonstrable antileukemic response in 13 patients. Nine patients achieved molecular remission as demonstrated by normalization of WT1 transcript levels, 5 of which were sustained after a median follow-up of 109.4 months. Disease stabilization was achieved in 4 other patients. Five-year overall survival (OS) was higher in responders than in nonresponders (53.8% vs 25.0%; P 5 .01). In patients receiving DCs in first complete remission (CR1), there was a vaccine-induced relapse reduction rate of 25%, and 5-year relapse-free survival was higher in responders than in nonresponders (50% vs 7.7%; P < .0001). In patients age £65 and >65 years who received DCs in CR1, 5-year OS was 69.2% and 30.8% respectively, as compared with 51.7% and 18% in the Swedish Acute Leukemia Registry. Long-term clinical response was correlated with increased circulating frequencies of polyepitope WT1-specific CD8 1 T cells. Long-term OS was correlated with interferon-g 1 and tumor necrosis factor-a 1 WT1-specific responses in delayed-type hypersensitivity-infiltrating CD8 1 T lymphocytes. In conclusion, vaccination of patients with AML with WT1 mRNA-electroporated DCs can be an effective strategy to prevent or delay relapse after standard chemotherapy, translating into improved OS rates, which are correlated with the induction of WT1-specific CD8 1 T-cell response. This trial was registered at www.clinicaltrials.gov as #NCT00965224. (Blood. 2017;130(15):1713-1721
Although cancer vaccination has yielded promising results in patients, the objective response rates are low. The right choice of adjuvant might improve the efficacy. Here, we review the biological rationale, as well as the preclinical and clinical results of polyinosinic:polycytidylic acid and its derivative poly-ICLC as cancer vaccine adjuvants. These synthetic immunological danger signals enhanced vaccine-induced anti-tumor immune responses and contributed to tumor elimination in animal tumor models and patients. Supported by these results, poly-ICLC-containing cancer vaccines are currently extensively studied in the ongoing trials, making it highly plausible that poly-ICLC will be part of the future approved cancer immunotherapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.